Background/aim: To evaluate efficacy of the AIxURO system, a deep learning-based artificial intelligence (AI) tool, in enhancing the accuracy and reliability of urine cytology for diagnosing upper urinary tract cancers.
Materials And Methods: One hundred and eighty-five cytology samples of upper urine tract were collected and categorized according to The Paris System for Reporting Urinary Cytology (TPS), yielding 168 negative for High-Grade Urothelial Carcinoma (NHGUC), 14 atypical urothelial cells (AUC), 2 suspicious for high-grade urothelial carcinoma (SHGUC), and 1 high-grade urothelial carcinoma (HGUC). The AIxURO system, trained on annotated cytology images, was employed to analyze these samples.
Introduction: Digitizing cytology slides presents challenges because of their three-dimensional features and uneven cell distribution. While multi-Z-plane scan is a prevalent solution, its adoption in clinical digital cytopathology is hindered by prolonged scanning times, increased image file sizes, and the requirement for cytopathologists to review multiple Z-plane images.
Methods: This study presents heuristic scan as a novel solution, using an artificial intelligence (AI)-based approach specifically designed for cytology slide scanning as an alternative to the multi-Z-plane scan.
Background: Multiple antigens, autoantibodies (AAb), and antigen-autoantibody (Ag-AAb) complexes were compared for their ability to complement CA125 for early detection of ovarian cancer.
Methods: Twenty six biomarkers were measured in a single panel of sera from women with early stage (I-II) ovarian cancers (n = 64), late stage (III-IV) ovarian cancers (186), benign pelvic masses (200) and from healthy controls (502), and then split randomly (50:50) into a training set to identify the most promising classifier and a validation set to compare its performance to CA125 alone.
Results: Eight biomarkers detected ≥ 8% of early stage cases at 98% specificity.
Background: Acquiring well-focused digital images of cytology slides with scanners can be challenging due to the 3-dimensional nature of the slides. This study evaluates performances of whole-slide images (WSIs) obtained from 2 different cytopreparations by 2 distinct scanners with 3 focus modes.
Methods: Fourteen urine specimens were collected from patients with urothelial carcinoma.
TP53 is the most commonly mutated gene in cancer and has been shown to form amyloid-like aggregates, similar to key proteins in neurodegenerative diseases. Nonetheless, the clinical implications of p53 aggregation remain unclear. Here, we investigated the presence and clinical relevance of p53 aggregates in serous ovarian cancer (OC).
View Article and Find Full Text PDFLongitudinal CA125 algorithms are the current basis of ovarian cancer screening. We report on longitudinal algorithms incorporating multiple markers. In the multimodal arm of United Kingdom Collaborative Trial of Ovarian Cancer Screening (UKCTOCS), 50,640 postmenopausal women underwent annual screening using a serum CA125 longitudinal algorithm.
View Article and Find Full Text PDFHarnessing the immune response to tumor antigens in the form of autoantibodies, which occurs early during tumor development, has relevance to the detection of cancer at early stages. We conducted an initial screen of antigens associated with an autoantibody response in serous ovarian cancer using recombinant protein arrays. The top 25 recombinants that exhibited increased reactivity with cases compared to controls revealed TP53 and MYC, which are ovarian cancer driver genes, as major network nodes.
View Article and Find Full Text PDFBackground: Early detection of ovarian cancer could significantly improve patient outcomes. Cancer antigen 125 (CA 125) is elevated in sera from approximately 60% of patients with early-stage (I/II) disease. Sensitivity might be improved through the combination of CA 125 with other biomarkers.
View Article and Find Full Text PDFEarly detection of ovarian cancer promises to reduce mortality. While serum CA125 can detect more than 60% of patients with early stage (I-II) disease, greater sensitivity might be observed with a panel of biomarkers. Ten protein antigens and 12 autoantibody biomarkers were measured in sera from 76 patients with early stage (I-II), 44 patients with late stage (III-IV) ovarian cancer and 200 healthy participants in the normal risk ovarian cancer screening study.
View Article and Find Full Text PDFBackground: Oral squamous cell carcinoma (OSCC) is a malignant tumor that may occur anywhere within the oral cavity. The survival rate of OSCC patients has not improved over the past decades due to its heterogeneous etiology, genetic aberrations, and treatment outcomes. We investigated the role of tumor necrosis factor receptor-associated factor 6 (TRAF6) in OSCC cells treated with bortezomib (a proteasome inhibitor) combined with irradiation (IR) treatment.
View Article and Find Full Text PDFThe tumor-suppressor gene is mutated in >95% of high-grade serous ovarian cancers. Detecting an autologous antibody response to TP53 that might improve early detection. An immunoassay was developed to measure TP53 autoantibody in sera from 378 cases of invasive epithelial ovarian cancer and 944 age-matched healthy controls from the United States, Australia, and the United Kingdom.
View Article and Find Full Text PDFExpert Rev Mol Diagn
June 2017
Despite advances in surgery and chemotherapy for ovarian cancer, 70% of women still succumb to the disease. Biomarkers have contributed to the management of ovarian cancer by monitoring response to treatment, detecting recurrence, distinguishing benign from malignant pelvic masses and attempting to detect disease at an earlier stage. Areas covered: This review focuses on recent advances in biomarkers and imaging for management of ovarian cancer with particular emphasis on early detection.
View Article and Find Full Text PDFUnderstanding the mechanism by which cell growth, migration, polyploidy, and tumorigenesis are regulated may provide important therapeutic strategies for cancer therapy. Here we identify the Skp2-macroH2A1 (mH2A1)-cyclin-dependent kinase 8 (CDK8) axis as a critical pathway for these processes, and deregulation of this pathway is associated with human breast cancer progression and patient survival outcome. We showed that mH2A1 is a new substrate of Skp2 SCF complex whose degradation by Skp2 promotes CDK8 gene and protein expression.
View Article and Find Full Text PDFLKB1 is activated by forming a heterotrimeric complex with STRAD and MO25. Recent studies suggest that LKB1 has pro-oncogenic functions, besides acting as a tumor suppressor. How the LKB1 activity is maintained and how LKB1 regulates cancer development are largely unclear.
View Article and Find Full Text PDFIn rheumatoid arthritis (RA), macrophage is one of the major sources of inflammatory mediators. Macrophages produce inflammatory cytokines through toll-like receptor (TLR)-mediated signalling during RA. Herein, we studied macrophages from the synovial fluid of RA patients and observed a significant increase in activation of inositol-requiring enzyme 1α (IRE1α), a primary unfolded protein response (UPR) transducer.
View Article and Find Full Text PDFK63-linked ubiquitination of Akt is a posttranslational modification that plays a critical role in growth factor-mediated membrane recruitment and activation of Akt. Although E3 ligases involved in growth factor-induced ubiquitination of Akt have been defined, the deubiquitinating enzyme (DUB) that triggers deubiquitination of Akt and the function of Akt deubiquitination remain largely unclear. We showed that CYLD was a DUB for Akt and suppressed growth factor-mediated ubiquitination and activation of Akt.
View Article and Find Full Text PDFAkt kinase plays a central role in cell growth, metabolism, and tumorigenesis. The TRAF6 E3 ligase orchestrates IGF-1-mediated Akt ubiquitination and activation. Here, we show that Akt ubiquitination is also induced by activation of ErbB receptors; unexpectedly, and in contrast to IGF-1 induced activation, the Skp2 SCF complex, not TRAF6, is a critical E3 ligase for ErbB-receptor-mediated Akt ubiquitination and membrane recruitment in response to EGF.
View Article and Find Full Text PDFAlthough the maintenance of HSC quiescence and self-renewal are critical for controlling stem cell pool and transplantation efficiency, the mechanisms by which they are regulated remain largely unknown. Understanding the factors controlling these processes may have important therapeutic potential for BM failure and cancers. Here, we show that Skp2, a component of the Skp2 SCF complex, is an important regulator for HSC quiescence, frequency, and self-renewal capability.
View Article and Find Full Text PDFDNA damage response is an important surveillance mechanism used to maintain the integrity of the human genome in response to genotoxic stress. Histone variant H2AX is a critical sensor that undergoes phosphorylation at serine 139 upon genotoxic stress, which provides a docking site to recruit the mediator of DNA damage checkpoint protein 1 (MDC1) and DNA repair protein complex to sites of DNA breaks for DNA repair. Here, we show that monoubiquitination of H2AX is induced upon DNA double strand breaks and plays a critical role in H2AX Ser-139 phosphorylation (γ-H2AX), in turn facilitating the recruitment of MDC1 to DNA damage foci.
View Article and Find Full Text PDFThe RhoA GTPase is crucial in numerous biological functions and is linked to cancer metastasis. However, the understanding of the molecular mechanism responsible for RhoA transcription is still very limited. Here we show that RhoA transcription is orchestrated by the Myc-Skp2-Miz1-p300 transcriptional complex.
View Article and Find Full Text PDFCellular senescence has been recently shown to have an important role in opposing tumour initiation and promotion. Senescence induced by oncogenes or by loss of tumour suppressor genes is thought to critically depend on induction of the p19(Arf)-p53 pathway. The Skp2 E3-ubiquitin ligase can act as a proto-oncogene and its aberrant overexpression is frequently observed in human cancers.
View Article and Find Full Text PDFAkt (also known as PKB) signaling orchestrates many aspects of biological functions and, importantly, its deregulation is linked to cancer development. Akt activity is well-known regulated through its phosphorylation at T308 and S473 by PDK1 and mTOrC2, respectively. Although in the last decade the research has been primarily focused on Akt phosphorylation and its role in Akt activation and functions, other posttranslational modifications on Akt have never been reported.
View Article and Find Full Text PDF