The motor imagery (MI)-based brain computer interface (BCI) is an intuitive interface that enables users to communicate with external environments through their minds. However, current MI-BCI systems ask naïve subjects to perform unfamiliar MI tasks with simple textual instruction or a visual/auditory cue. The unclear instruction for MI execution not only results in large inter-subject variability in the measured EEG patterns but also causes the difficulty of grouping cross-subject data for big-data training.
View Article and Find Full Text PDF