Publications by authors named "Wei-Jun Jin"

Chirality, with its intrinsic symmetry-breaking feature, is frequently utilized in the creation of acentric crystalline functional materials that exhibit intriguing optoelectronic properties. On the other hand, the development of chiral crystals from achiral molecules offers a solution that bypasses the need for enantiopure motifs, presenting a promising alternative and thereby expanding the possibilities of the self-assembly toolkit. Nevertheless, the rational design of achiral molecules that prefer spontaneous symmetry breaking during crystallization has so far been obscure.

View Article and Find Full Text PDF

Two binary cocrystals of 1,4-diiodotetrafluorobenzene (1,4-DITFB, CFI) and 1,3,5-trifluoro-2,4,6-triiodobenzene (1,3,5-TITFB, CFI) with the flexible 2-{[(naphthalen-2-yl)methyl]sulfanyl}pyridine 1-oxide (NTPO, CHNOS) molecule were successfully prepared and characterized by X-ray diffraction and quantum chemistry calculation methods. X-ray diffraction analysis reveals that the conformation of the flexible NTPO molecule has been changed significantly after introducing the 1,4-DITFB or 1,3,5-TITFB molecule into the NTPO lattice. Also the formation of the binary cocrystals is driven mainly by robust C-I.

View Article and Find Full Text PDF

Two dithiophene aldehyde/ketone derivatives are designed as luminescence molecular rotors, i.e., 1,1'-([2,2'-bithiophene]-3,3'-diyl)bis(ethan-1-one) (BTBE) and 3'-acetyl-[2,2'-bithiophene]-3-carbaldehyde (BTAC).

View Article and Find Full Text PDF

Rapid capture of I with high volatility and toxicity in the environment has attracted much attention. Herein we reported a firstly synthesized nonporous material: pyridine N-oxides (NTPO and ATPO) as iodine adsorbent. Both of NTPO and ATPO exhibit remarkable performance on the adsorption of iodine in aqueous solution, vapor state and organic solvents.

View Article and Find Full Text PDF

A large soft-cavity host composed of 1,4-diiodotetrafluorobenzene (DITFB) and 4-biphenylpyridine N-oxide (BPNO) is assembled under the mediation of a planar aromatic guest molecule (pyrene or perylene) through C-I⋅⋅⋅ O-N halogen bonds and π-hole⋅⋅⋅π bonds. Single-crystal X-ray diffraction reveals that guest molecules can be completely encapsulated in the four-layer host cavity to assemble ternary host-guest cocrystals; namely, Pyr@DITFB ⋅ BPNO and Per@DITFB ⋅ BPNO. The luminescence of these ternary cocrystals originates from their discrete guest molecules, which exhibit pure-blue and yellow emissions, respectively, that are localized at 425 nm and in the range of 485 to 578 nm, respectively.

View Article and Find Full Text PDF

Luminescent polymer dots have showed great potential applications in chemical sensing and bioimaging. Herein, phosphoramidic acid oligomers in aqueous solution can form nanodots (ONDs) with mean diameter of 50 ~ 60 nm. The ONDs display blue fluorescence of excitation-dependence and the fluorescence quantum yields can reach 4.

View Article and Find Full Text PDF

The present paper displays new supramolecular structural forms of ammonia molecules. The computation reveals that two novel threading structures of CF·(NH) and CF·(NH) can be assembled between difluoroethyne and ammonia molecules, in which cyclohexamer (NH) and dicyclohexamer (NH) are constructed by robust N-H···N hydrogen bonds and stabilized all by π-ring-hole···N bonds as supporting spokes of annular structures. More interestingly, annular structures of NH still maintain stability as CF is removed.

View Article and Find Full Text PDF

Purely organic phosphors with persistent room-temperature phosphorescence (RTP) demonstrate promising potential applications in optoelectronic area, bioimaging, and chemical sensing. However, it is still a formidable challenge to further design new organic phosphors due to the unclear mechanism to produce ultralong phosphorescence lifetimes. This paper investigates the correlation between the ultralong phosphorescence lifetime and structure of a series of 4-carbonylphenylboronic acid derivatives in the crystal state.

View Article and Find Full Text PDF

Two new co-crystals, tetra-iodo-ethyl-ene-phenanthridine (1/2), 0.5CI·CHN () and tetra-iodo-ethyl-ene-benzo[]quinoline (1/2), 0.5CI·CHN (), were obtained from tetra-iodo-ethyl-ene and aza-phenanthrenes, and characterized by IR and fluorescence spectroscopy, elemental analysis and X-ray crystallography.

View Article and Find Full Text PDF

Room temperature phosphorescence (RTP) materials have become a hot topic in fields of organic light-emitting dioes, biological sensing and imaging. The present work reports firstly that 1,3,5-trifluoro-2,4,6-triiodobenzene (TITFB) can act as a simple pure organic NIR phosphor due to its novel function in promoting n-π∗ transition. Also, TITFB crystal has longer phosphorescence lifetime than other ordinary multiiodoluminophors and TITFB powder.

View Article and Find Full Text PDF

A new julolidine based Schiff base receptor (L) was synthesized and characterized. L forms a 1:1 complex with Al in methanol, resulting in an immediate color change from chartreuse to orange and a remarkable enhancement in its emission intensity along with a bathochromic shift from 540 nm to 570 nm. Addition of trace amounts of water significantly quenches the fluorescence emission, where a decomplexation of Al from the L-Al complex takes place.

View Article and Find Full Text PDF

Single-crystal X-ray diffraction reveals a series of phosphorescent cocrystals which were assembled by 1,4-diiodotetrafluorobenzene (1,4-DITFB) and either 4,7-dimethyl-1,10-phenanthroline (DMPhe), 4,7-diphenyl-1,10-phenanthroline (DPPhe) or 4,7-dichloro-1,10-phenanthroline (DClPhe) via C-I...

View Article and Find Full Text PDF

The halogen-bonded cocrystal of 1,4-diiodotetrafluorobenzene (1,4-DITFB) with the butterfly-shape non-planar heterocyclic compound phenothiazine (PHT) was successfully assembled by the conventional solution-based method. X-ray single-crystal diffraction analysis reveals a 3:2 stoichiometric ratio for the cocrystal (1,4-DITFB/PHT), and the cocrystal structure is constructed via C-I..

View Article and Find Full Text PDF

X-ray single crystal diffraction reveals that a series of cocrystals are assembled by three ring angular diazaphenanthrenes including 1,7-phenanthroline, 4,7-phenanthroline and 1,10-phenanthroline with 1,4-/1,2-diiodotetrafluorobenzenes via C-I···N halogen bonding (XB) as main driving force. Raman shift of the symmetric CI stretching vibration coupling with ring elongation and lateral ring expansion to a lower frequency by 2 to 7cm for 1,4-DITFB in cocrystals shows the existence of C-I···N halogen bonding. All cocrystals phosphoresce with a distinct change of colors from yellow, orange, pink to red.

View Article and Find Full Text PDF

The σ-hole and π-hole are the regions with positive surface electrostatic potential on the molecule entity; the former specifically refers to the positive region of a molecular entity along extension of the Y-Ge/P/Se/X covalent σ-bond (Y = electron-rich group; Ge/P/Se/X = Groups IV-VII), while the latter refers to the positive region in the direction perpendicular to the σ-framework of the molecular entity. The directional noncovalent interactions between the σ-hole or π-hole and the negative or electron-rich sites are named σ-hole bond or π-hole bond, respectively. The contributions from electrostatic, charge transfer, and other terms or Coulombic interaction to the σ-hole bond and π-hole bond were reviewed first followed by a brief discussion on the interplay between the σ-hole bond and the π-hole bond as well as application of the two types of noncovalent interactions in the field of anion recognition.

View Article and Find Full Text PDF

The (13)C NMR chemical shift moving upfield indicates the main model of π-holeX(-) bond between cyanuric chloride/1,3,5-triazine (3ClN/3N), which possess both the π-hole and σ-hole, and X(-). (13)C NMR and UV absorption titration in acetonitrile confirmed that the bonding abilities of 3ClN/3N with X(-) follow the order I(-) > Br(-) > Cl(-), which is apparently the order of the charge transfer ability of halide to 3ClN/3N. Chemical calculations showed that the bonding abilities in solution were essentially consistent with those obtained by titration experiments.

View Article and Find Full Text PDF

Halogen bonding as a new strategy for introducing heavy atom perturbers in defined stoichiometry in the design of organic phosphors is reviewed. Considering ten novel cocrystals assembled by polyaromatic hydrocarbons (PAHs) and their heterocyclic analogues and haloperfluorobenzenes using the new strategy, apart from biphenyl cocrystals they all phosphoresce strongly, showing that the new methodology can induce phosphorescence by a heavy atom effect. More interesting, the phosphorescence properties, including excitation/emission wavelengths and decay dynamics, show dependence on the structure of the PAHs and interaction patterns, which is very important and valuable in modulation of the expected colors of luminescent materials.

View Article and Find Full Text PDF

It is proposed that molecular iodine as a donor could form halogen bonding complexes with amantadine (AMD) and amantadine hydrochloride (AMD-HCl) in chloroform and the resultant charge transfer bands (CT band) would be located at 259 and 253 nm, respectively. The halogen bonding interaction was explored by UV absorption, Raman and X-ray crystallography, and a new bonding model named N(+)···N(lep) bond in crystal was observed. The halogen bonding complexes were utilized in the development of simple and accurate spectrophotometry for the analysis of AMD/AMD-HCl.

View Article and Find Full Text PDF

On the basis of the varying amplitude and patterns of the (19)F NMR chemical shift of C6F5X (X = F, Cl, Br, I) in the presence of chloride anions, bonding models of C6F5X·Cl(-) complexes were tentatively established, and the relevant binding constants were obtained. Interaction models were also simulated using computational chemistry. The theoretical computations were found to be highly consistent with the results of the experiments.

View Article and Find Full Text PDF

A new fluorescent probe, 4-N,N-di(2-hydroxyethyl)imino-7-nitrobenzo-2-oxa-1,3-diazole (HINBD) was synthesized in a single step with reasonably good yield. The water-soluble HINBD emits strongly in the visible region (λex  = 479 nm, λem  = 545 nm) and is stable over a wide range of pH values. It was found that vitamin B12 (VB12 ) had the ability to quench the fluorescence of HINBD, and the quenched fluorescence intensity was proportional to the concentration of VB12 .

View Article and Find Full Text PDF

Calculation predicted the interacting forms of halopentafluorobenzene C6F5X (X=F, Cl, Br, I) with triethylphosphine oxide which is biologically interested and easily detected by (31)P NMR. The interaction energy and geometric parameters of resultant halogen or π-hole bonding complexes were estimated and compared. Moreover, the bonding constants were determined by (31)P NMR.

View Article and Find Full Text PDF

The phosphorescence behavior and solvation dynamics of Pd(II)-meso-tetra(4-carboxyphenyl)porphine (Pd-TCPP) in three imidazolium ionic liquids (ILs) has been studied. The phosphorescence excitation and emission position of Pd-TCPP are dependent on the polarity, constituent ions and structure of the ILs. The phosphorescence decay of Pd-TCPP in these ILs is bi-exponential, and the average lifetimes decrease in the following order: 0.

View Article and Find Full Text PDF

A novel co-crystal, [(BTEMPO)2(2+)·4I2·2I5(-)] (BTEMPO(+) = 4-benzoyloxy-2,2,6,6-tetramethylpiperidinyl-1-oxoammonium cation), was successfully constructed using iodine and 4-benzoyloxy-2,2,6,6-tetramethylpiperidinyl-1-oxy free radical (BTEMPO) as starting materials and was well characterized by XRD, Raman and calculation. The co-crystal possesses a fascinating 3D anionic cage structure formed by V-shaped-pentaiodides and iodine via multiple halogen bonding and on a template of dimeric (BTEMPO)2(2+) cations. The cationic dimers are held together by a pair of reversed C-H···O=C hydrogen bonds and stabilized the 3D cage structure by C-H···I hydrogen bonds between methyl-protons of BTEMPO(+) and iodine in the framework.

View Article and Find Full Text PDF

The selection of the halogen bonding (XB) donor is an important factor in molecular recognition of halides by XB. Here XB complexes between tetraiodoethylene (TIE) as another donor instead of iodoperfluorobenzene and halides are investigated using UV-Vis, Raman, FT-IR, XRD, PXRD and calculations. A 1 : 1 stoichiometry of TIE with halide anions in dilute solution is confirmed.

View Article and Find Full Text PDF

For the first time, halogen-bonding interaction is utilised in the solid phase extraction of perfluorinated iodoalkane (PFI). Nine PFIs, as model analytes, were tested, and analyses by UV, (19)F NMR and Raman spectroscopies demonstrate that the PFIs are extracted by a strong anion exchange (SAX) sorbent from n-hexane due to the C-I···Cl(-) halogen-bonding interactions. The results also show that the adsorptivities of SAX for the diiodoperfluoro-alkanes (diiodo-PFIs) were much stronger than those for the perfluoroalkyl iodides (monoiodo-PFIs).

View Article and Find Full Text PDF