Publications by authors named "Wei-Huan He"

The surge in lithium-ion batteries has heightened concerns regarding metal resource depletion and the environmental impact of spent batteries. Battery recycling has become paramount globally, but conventional techniques, while effective at extracting transition metals like cobalt and nickel from cathodes, often overlook widely used spent LiFePO due to its abundant and low-cost iron content. Direct regeneration, a promising approach for restoring deteriorated cathodes, is hindered by practicality and cost issues despite successful methods like solid-state sintering.

View Article and Find Full Text PDF

The formation of a solid electrolyte interphase on carbon anodes causes irreversible loss of Na ions, significantly compromising the energy density of Na-ion full cells. Sodium compensation additives can effectively address the irreversible sodium loss but suffer from high decomposition voltage induced by low electrochemical activity. Herein, we propose a universal electrocatalytic sodium compensation strategy by introducing a carbon nanotube (CNT)/MnO catalyst to realize full utilization of sodium compensation additives at a much-reduced decomposition voltage.

View Article and Find Full Text PDF

O3-type layered oxide cathodes (NaTMO) for sodium-ion batteries (SIBs) have attracted significant attention as one of the most promising potential candidates for practical energy storage applications. The poor Na diffusion kinetics is, however, one of the major obstacles to advancing large-scale practical application. Herein, we report bismuth-doped O3-NaNiMnO (NMB) microspheres consisting of unique primary nanoplatelets with the radially oriented {010} active lattice facets.

View Article and Find Full Text PDF

The prosperity of the lithium-ion battery market is dialectically accompanied by the depletion of corresponding resources and the accumulation of spent batteries. It is an urgent priority to develop green and efficient battery recycling strategies for helping ease resources and environmental pressures at the current stage. Here, we propose a mild and efficient lithium extracting strategy based on potential controllable redox couples.

View Article and Find Full Text PDF

The interfacial stability is highly responsible for the longevity and safety of sodium ion batteries (SIBs). However, the continuous solid-electrolyte interphase(SEI) growth would deteriorate its stability. Essentially, the SEI growth is associated with the electron leakage behavior, yet few efforts have tried to suppress the SEI growth, from the perspective of mitigating electron leakage.

View Article and Find Full Text PDF

With the ever increasing demand for low-cost and economic sustainable energy storage, Na-ion batteries have received much attention for the application on large-scale energy storage for electric grids because of the worldwide distribution and natural abundance of sodium element, low solvation energy of Na ion in the electrolyte and the low cost of Al as current collectors. Starting from a brief comparison with Li-ion batteries, this review summarizes the current understanding of layered oxide cathode/electrolyte interphase in NIBs, and discusses the related degradation mechanisms, such as surface reconstruction and transition metal dissolution. Recent advances in constructing stable cathode electrolyte interface (CEI) on layered oxide cathode are systematically summarized, including surface modification of layered oxide cathode materials and formulation of electrolyte.

View Article and Find Full Text PDF

The complexity of chemical compounds in lithium-ion batteries (LIBs) results in great difficulties in the extraction of multiple transition metals, which have similar physicochemical characteristics. Here, we propose a novel strategy for selective extraction of nickel, cobalt, and manganese from spent LiNi Co Mn O (NCM) cathode through the regulation of coordination environment. Depending on adjusting the composition of ligand in transition metal complexes, a tandem leaching and separation system is designed and finally enables nickel, cobalt, and manganese to enrich in the form of NiO, Co O , and Mn O with high recovery yields of 99.

View Article and Find Full Text PDF

Chemical modification of electrode materials by heteroatom dopants is crucial for improving storage performance in rechargeable batteries. Electron configurations of different dopants significantly influence the chemical interactions inbetween and the chemical bonding with the host material, yet the underlying mechanism remains unclear. We revealed competitive doping chemistry of Group IIIA elements (boron and aluminum) taking nickel-rich cathode materials as a model.

View Article and Find Full Text PDF