The train horn sound is an active audible warning signal used for warning commuters and railway employees of the oncoming train(s), assuring a smooth operation and traffic safety, especially at barrier-free crossings. This work studies deep learning-based approaches to develop a system providing the early detection of train arrival based on the recognition of train horn sounds from the traffic soundscape. A custom dataset of train horn sounds, car horn sounds, and traffic noises is developed to conduct experiments and analysis.
View Article and Find Full Text PDFThis paper investigates the problem of how to partition unknown speech utterances into a set of clusters, such that each cluster consists of utterances from only one speaker, and the number of clusters reflects the unknown speaker population size. The proposed method begins by specifying a certain number of clusters, corresponding to one of the possible speaker population sizes, and then maximizes the level of overall within-cluster homogeneity of the speakers' voice characteristics. The within-cluster homogeneity is characterized by the likelihood probability that a cluster model, trained using all the utterances within a cluster, matches each of the within-cluster utterances.
View Article and Find Full Text PDF