Centromeres are specified epigenetically through the deposition of the centromere-specific histone H3 variant CENP-A. However, how additional epigenetic features are involved in centromere specification is unknown. Here, we find that histone H4 Lys5 and Lys12 acetylation (H4K5ac and H4K12ac) primarily occur within the pre-nucleosomal CENP-A-H4-HJURP (CENP-A chaperone) complex, before centromere deposition.
View Article and Find Full Text PDFIn vertebrate cells, centromeres are specified epigenetically through the deposition of the centromere-specific histone CENP-A. Following CENP-A deposition, additional proteins are assembled on centromeric chromatin. However, it remains unknown whether additional epigenetic features of centromeric chromatin are required for kinetochore assembly.
View Article and Find Full Text PDFCentromeres are specified by sequence-independent epigenetic mechanisms in most organisms. Rarely, centromere repositioning results in neocentromere formation at ectopic sites. However, the mechanisms governing how and where neocentromeres form are unknown.
View Article and Find Full Text PDFCENP-A acts as an important epigenetic marker for kinetochore specification. However, the mechanisms by which CENP-A is incorporated into centromeres and the structural basis for kinetochore formation downstream of CENP-A remain unclear. Here, we used a unique chromosome-engineering system in which kinetochore proteins are targeted to a noncentromeric site after the endogenous centromere is conditionally removed.
View Article and Find Full Text PDFThe centromere is essential for faithful chromosome segregation by providing the site for kinetochore assembly. Although the role of the centromere is conserved throughout evolution, the DNA sequences associated with centromere regions are highly divergent among species and it remains to be determined how centromere DNA directs kinetochore formation. Despite the active use of chicken DT40 cells in studies of chromosome segregation, the sequence of the chicken centromere was unclear.
View Article and Find Full Text PDFKinetochore specification and assembly requires the targeted deposition of specialized nucleosomes containing the histone H3 variant CENP-A at centromeres. However, CENP-A is not sufficient to drive full-kinetochore assembly, and it is not clear how centromeric chromatin is established. Here, we identify CENP-W as a component of the DNA-proximal constitutive centromere-associated network (CCAN) of proteins.
View Article and Find Full Text PDFAmphiphysin1, which can simultaneously bind to dynamin1 and the clathrin adaptor AP-2, is essential for dynamin1 recruitment during receptor-mediated endocytosis, but little is known about its regulatory mechanism. Here, we purified a 120-kDa mitogen-activated protein kinase (MAPK) substrate protein from porcine brains and identified the protein as amphiphysin1. Serine phosphorylation of amphiphysin1 was rapidly induced by nerve growth factor (NGF) in PC12 cells, and the induction was blocked by a MAPK inhibitor.
View Article and Find Full Text PDFA 19 kDa protein was identified to associate with the Dbl oncogene homology domain of Sos1 (Sos-DH) and was purified from rat brains by GST-Sos-DH affinity chromatography. Peptide sequencing revealed that the protein is identical to light chain 3 (LC3), a microtubule-associated protein. LC3 coimmunoprecipitated with Sos1, and GST-LC3 was capable of forming complexes with Sos1 in in vitro GST-pull down assay.
View Article and Find Full Text PDF