Solid phase synthesis is the most dominant approach for the preparation of biological oligomers as it enables the introduction of monomers iteratively. Accelerated solid phase synthesis of biological oligomers is crucial for chemical biology, but its application to the synthesis of oligosaccharides is not trivial. Solid-phase oligosaccharide assembly is a slow process performed in a variety of conditions and temperatures, requires an inert gas atmosphere, and demands high excess of glycosyl donors.
View Article and Find Full Text PDFOptimization of glycosylation conditions for automated glycan assembly is highly challenging, demands wasteful use of precious building blocks, and relies on nontrivial analyses. We developed a semi-quantitative method for automated optimization of glycosylation temperature that utilized minute quantities of donors and translated those conditions to solid-phase glycan assembly.
View Article and Find Full Text PDFThis study describes an efficient protocol for the preparation of substituted 2,4-diaryl-3-sulfonylquinolines from functionalized 2-aminobenzophenones and aromatic β-ketosulfones by using p-toluenesulfonic acid monohydrate under microwave irradiation. In this atom-economical synthetic route, a series of pharmaceutically active 3-arylsulfonylquinolines with good functional group tolerance are prepared in good to excellent yields. Some structures are confirmed by single-crystal X-ray diffraction analysis.
View Article and Find Full Text PDF