Publications by authors named "Wei-Che Hsieh"

Irinotecan inhibits cell proliferation and thus is used for the primary treatment of colorectal cancer. Metabolism of irinotecan involves incorporation of β-glucuronic acid to facilitate excretion. During transit of the glucuronidated product through the gastrointestinal tract, an induced upregulation of gut microbial β-glucuronidase (GUS) activity may cause severe diarrhea and thus force many patients to stop treatment.

View Article and Find Full Text PDF

miRNAs are key regulators of various biological processes. Dysregulation of miRNA is linked to many diseases. Development of miRNA inhibitor has implication in disease therapy and study of miRNA function.

View Article and Find Full Text PDF

Selective inhibitors of gut bacterial β-glucuronidases (GUSs) are of particular interest in the prevention of xenobiotic-induced toxicities. This study reports the first structure-activity relationships on potency and selectivity of several iminocyclitols (-) for the GUSs. Complex structures of GUS with - explained how charge, conformation, and substituent of iminocyclitols affect their potency and selectivity.

View Article and Find Full Text PDF

We report the syntheses of chemical building blocks of a particular class of chiral PNAs, called miniPEG-containing (R)-gamma PNAs (or (R)-MPγPNAs). The strategy involves the application of 9-(4-bromophenyl)-9-fluorenyl as a temporary, safety-catch protecting group for the suppression of racemization in the alkylation and reductive amination steps. The methodology is general and robust, ideally suited for large-scale monomer productions with most synthetic steps providing excellent chemical yields without the need for purification other than a simple workup and precipitation.

View Article and Find Full Text PDF

A robust synthetic route has been developed for preparing optically pure, Fmoc-protected diethylene glycol-containing ( R)- and ( S)-γPNA monomers. The strategy involves the application of 9-(4-bromophenyl)-9-fluorenyl as a temporary, safety-catch protecting group for the suppression of epimerization in the O-alkylation and reductive amination steps. The optical purities of the final monomers were determined to be greater than 99.

View Article and Find Full Text PDF

Synthetic molecules capable of DNA binding and mimicking cooperation of transcription factor (TF) pairs have long been considered a promising tool for manipulating gene expression. Our previously reported Pip-HoGu system, a programmable DNA binder pyrrole-imidazole polyamides (PIPs) conjugated to host-guest moiety, defined a general framework for mimicking cooperative TF pair-DNA interactions. Here, we supplanted the cooperation modules with left-handed (LH) γPNA modules: i.

View Article and Find Full Text PDF

Genetic diseases can be diagnosed early during pregnancy, but many monogenic disorders continue to cause considerable neonatal and pediatric morbidity and mortality. Early intervention through intrauterine gene editing, however, could correct the genetic defect, potentially allowing for normal organ development, functional disease improvement, or cure. Here we demonstrate safe intravenous and intra-amniotic administration of polymeric nanoparticles to fetal mouse tissues at selected gestational ages with no effect on survival or postnatal growth.

View Article and Find Full Text PDF

We report the development of a new class of nucleic acid ligands that is comprised of Janus bases and the MPγPNA backbone and is capable of binding rCAG repeats in a sequence-specific and selective manner via, inference, bivalent H-bonding interactions. Individually, the interactions between ligands and RNA are weak and transient. However, upon the installation of a C-terminal thioester and an N-terminal cystine and the reduction of disulfide bond, they undergo template-directed native chemical ligation to form concatenated oligomeric products that bind tightly to the RNA template.

View Article and Find Full Text PDF

Toxic RNAs containing expanded trinucleotide repeats are the cause of many neuromuscular disorders, one being myotonic dystrophy type 1 (DM1). DM1 is triggered by CTG-repeat expansion in the 3'-untranslated region of the DMPK gene, resulting in a toxic gain of RNA function through sequestration of MBNL1 protein, among others. Herein, we report the development of a relatively short miniPEG-γ peptide nucleic acid probe, two triplet repeats in length, containing terminal pyrene moieties, that is capable of binding rCUG repeats in a sequence-specific and selective manner.

View Article and Find Full Text PDF

Template-directed synthesis offers several distinct benefits over conventional laboratory creation, including unsurpassed reaction rate and selectivity. Although it is central to many biological processes, such an approach has rarely been applied to the in situ synthesis and recognition of biomedically relevant target. Towards this goal, we report the development of a three-codon nucleic-acid probe containing a C-terminal thioester group and an N-terminal cysteine that is capable of undergoing template-directed oligomerization in the presence of an RNA target and self-deactivation in its absence.

View Article and Find Full Text PDF

MicroRNAs (miRs) are frequently overexpressed in human cancers. In particular, miR-210 is induced in hypoxic cells and acts to orchestrate the adaptation of tumor cells to hypoxia. Silencing oncogenic miRs such as miR-210 may therefore offer a promising approach to anticancer therapy.

View Article and Find Full Text PDF

Nucleic acids are an attractive platform for organizing molecular self-assembly because of their specific nucleobase interactions and defined length scale. Routinely employed in the organization and assembly of materials in vitro, however, they have rarely been exploited in vivo, due to the concerns for enzymatic degradation and cross-hybridization with the host's genetic materials. Herein we report the development of a tight-binding, orthogonal, synthetically versatile, and informationally interfaced nucleic acid platform for programming molecular interactions, with implications for in vivo molecular assembly and computing.

View Article and Find Full Text PDF

Oseltamivir phosphonic acid (tamiphosphor, 3a), its monoethyl ester (3c), guanidino-tamiphosphor (4a), and its monoethyl ester (4c) are potent inhibitors of influenza neuraminidases. They inhibit the replication of influenza viruses, including the oseltamivir-resistant H275Y strain, at low nanomolar to picomolar levels, and significantly protect mice from infection with lethal doses of influenza viruses when orally administered with 1 mg/kg or higher doses. These compounds are stable in simulated gastric fluid, liver microsomes, and human blood and are largely free from binding to plasma proteins.

View Article and Find Full Text PDF