Publications by authors named "Wei-Bing Liu"

Dencichine, a sought-after compound in the medical industry, requires a more efficient and sustainable production method than the current plant extraction process. This study successfully remodeled the metabolic pathway of Corynebacterium glutamicum to produce dencichine from the precursors of L-2,3-diaminopropionate (L-DAP) and oxalyl-coenzyme A. Firstly, a synthetic pathway for L-DAP was established by introducing exogenous enzymes ZmaU/ZmaV.

View Article and Find Full Text PDF

The di-2-ethylhexyl phthalate (DEHP) degrading strain LMB-7 was isolated from electronic waste soil. According to its biophysical/biochemical characteristics and 16S rRNA gene analysis, the strain was identified as Nocardia asteroides. Optimal pH and temperature for DEHP degradation were 8.

View Article and Find Full Text PDF

This study explored the molecular mechanism behind the protective effects from low-dose lipopolysaccharide (LPS) on an in-vitro model of spinal cord injury (SCI). For this, PC12 cells were treated with different concentrations of LPS and the cell counting kit-8 assay was used to measure the toxicity of LPS to the cells. Next, we used immunofluorescence to measure nuclear translocation of Nrf2 in PC12 cells.

View Article and Find Full Text PDF

Tuberculosis, caused by mycobacteria, continues to pose a substantial public health threat. Mycobacteria typically use cholesterol from the membranes of host macrophages as a carbon and energy source. Most genes that control cholesterol degradation are regulated by KstR, which is highly conserved in Mycobacterium tuberculosis and Mycobacterium smegmatis.

View Article and Find Full Text PDF

Exopolysaccharides (EPSs) such as capsular polysaccharide (CPS) are important bioactive carbohydrate compounds and are often used as bioenrichment agents and bioabsorbers to remove environmental pollutants like di-n-butyl phthalate (DBP). Among the EPS-producing bacteria, lactic acid bacteria (LAB) have gained the most attention. As generally recognized as safe (GRAS) microorganisms, LAB can produce EPSs having many different structures and no health risks.

View Article and Find Full Text PDF

utilizes fatty acids of the host as the carbon source. Metabolism of odd-chain fatty acids by produces propionyl coenzyme A (propionyl-CoA). The methylcitrate cycle is essential for mycobacteria to utilize the propionyl-CoA to persist and grow on these fatty acids.

View Article and Find Full Text PDF

Melanoma is the most aggressive skin cancer, and accounts for the major part of skin cancer-related deaths in the world. In addition, the underlying mechanism of tumor progression in melanoma remains far from being elucidated. In this study, we have evaluated the function of miR-25 in melanoma.

View Article and Find Full Text PDF

Malignant melanoma, one of the most aggressive skin cancers, has a very high mortality rate. Currently, the number of drugs to treat melanoma is low. Although new immunotherapeutic approaches based on the use of antibodies against immune checkpoints have shown long term responses, it is urgent to develop novel anti-melanoma drugs with a high efficiency and a low toxicity in a large number of patients.

View Article and Find Full Text PDF

Assimilation of short-chain fatty acids (SCFAs) plays an important role in the survival and lipid biosynthesis of . However, regulation of this process has not been thoroughly described. In the present work, we demonstrate that GlnR as a well-known nitrogen-sensing regulator transcriptionally modulates the AMP-forming propionyl-CoA synthetase (MsPrpE), and acetyl-CoA synthetases (MsAcs) is associated with SCFAs assimilation in , a model .

View Article and Find Full Text PDF

AccD6 is an important component of acetyl-CoA/propionyl-CoA carboxylase, which acts as a key role in mycolic acid synthesis and short chain fatty acyl-coenzyme A metabolism. In this study, we demonstrated that AccD6 of Mycobacterium smegmatis associates with AccA3 (α subunit of acetyl-CoA carboxylase, MSMEG_1807) and AccE (ε subunit, MSMEG_1812) to form the acetyl-CoA (propionyl-CoA) carboxylase. Results showed that the MSMEG_4331 subunit is a regulator that interacts with the promoter region of accD6 to inhibit its transcription.

View Article and Find Full Text PDF

Oral lichen planus (OLP) is a chronic inflammatory disease, has prolonged courses, repeated attacks and resistance to treatment. The traditional narrow spectrum UVB treatment has an established efficacy on skin lichen planus, and high safety. However, most of ultraviolet phototherapy devices have a huge volume, thereby cannot be used in the treatment of OLP.

View Article and Find Full Text PDF

One hundred and fifty GCN5-like acetyltransferases with amino acid-binding (ACT)-GCN5-related -acetyltransferase (GNAT) domain organization have been identified in actinobacteria. The ACT domain is fused to the GNAT domain, conferring amino acid-induced allosteric regulation to these protein acetyltransferases (Pat) (amino acid sensing acetyltransferase, (AAPatA)). Members of the AAPatA family share similar secondary structure and are divided into two groups based on the allosteric ligands of the ACT domain: the asparagine (Asn)-activated PatA and the cysteine (Cys)-activated PatA.

View Article and Find Full Text PDF

The regulatory mechanisms underlying the uptake and utilization of multiple types of carbohydrates in actinomycetes remain poorly understood. In this study, we show that GlnR (central regulator of nitrogen metabolism) serves as a universal regulator of nitrogen metabolism and plays an important, previously unknown role in controlling the transport of non-phosphotransferase-system (PTS) carbon sources in actinomycetes. It was observed that GlnR can directly interact with the promoters of most (13 of 20) carbohydrate ATP-binding cassette (ABC) transporter loci and can activate the transcription of these genes in response to nitrogen availability in industrial, erythromycin-producing Saccharopolyspora erythraea.

View Article and Find Full Text PDF

Unlabelled: NADP(+) is a vital cofactor involved in a wide variety of activities, such as redox potential and cell death. Here, we show that NADP(+) negatively regulates an acetyltransferase from Myxococcus xanthus, Mxan_3215 (MxKat), at physiologic concentrations. MxKat possesses an NAD(P)-binding domain fused to the Gcn5-type N-acetyltransferase (GNAT) domain.

View Article and Find Full Text PDF

Saccharopolyspora erythraea produces a large number of secondary metabolites with biological activities, including erythromycin. Elucidation of the mechanisms through which the production of these secondary metabolites is regulated may help to identify new strategies for improved biosynthesis of erythromycin. In this paper, we describe the systematic prediction and analysis of small non-coding RNAs (sRNAs) in S.

View Article and Find Full Text PDF

Saccharopolyspora erythraea is a Gram-positive bacterium that can produce antibiotics. However, this microorganism must often be genetically improved for higher production before it can be used in an industrial setting. Here, we report the whole-genome sequence of the industrial hyperproducer strong mutator Saccharopolyspora erythraea strain D.

View Article and Find Full Text PDF

Two genes encoding β-glucosidase from Streptomyces coelicolor A3(2) were cloned and expressed in Escherichia coli BL21 (DE3). Two recombinant enzymes (SC1059 and SC7558) were purified and characterized. The molecular mass of the purified SC1059 and SC7558 as determined by SDS-PAGE agrees with the calculated values (51.

View Article and Find Full Text PDF

A novel and reliable method for the direct preparation of 2,2-dihalo-N-phenylacetamides is reported. The key transformation involves the cleavage of a carbon-carbon bond in the presence of DIB and a Lewis acid as the halogen source, and thus this method significantly expands the value of DIB as a unique and powerful tool in chemical synthesis. This protocol not only adds a new aspect to reactions that use other hypervalent iodine reagents but also provides a wide space for the synthesis of disubstituted acetamides.

View Article and Find Full Text PDF

1-Carbamoyl-2-oxopropyl acetate derivatives were synthesized through an acetoxylation process to methylene with the aid of (diacetoxyiodo)benzene (DIB) as the oxidant. Not only mild reaction conditions, but also excellent yields and good substrate scope make the present protocol potentially useful in organic synthesis.

View Article and Find Full Text PDF

One hundred and twenty-one Salmonella isolates were obtained from food, feed, and live chicken samples derived from 13 countries or regions. In this study, their subtypes were evaluated by serotyping and multilocus sequence typing (MLST), and their genetic profiles were also characterized. It was demonstrated by serotyping on these isolates that 36 various serovars were obtained in this study, of which three serotypes S.

View Article and Find Full Text PDF

Five hundred fifty samples were collected from five chicken farms in Shanghai during March 2005 to October 2006. Twenty-five samples tested positive for Salmonella from a total of 550 samples, of which 500 were obtained from feces of healthy chickens and 50 were obtained from diseased chicks. The 25 presumptive Salmonella isolates were confirmed by the API 20E identification kit.

View Article and Find Full Text PDF

Background: To study the arboviruses carried by mosquitoes collected in Hebei Province.

Methods: Samples were collected from mosquito active sites and stored in liquid nitrogen till use. Pools of 20 to 30 mosquitoes were ground after sterilization, centrifugal supernant was inoculated onto C6/36 cell, cytopathic effect was observed for three sequential passages.

View Article and Find Full Text PDF