Publications by authors named "Wei-Bin Su"

Article Synopsis
  • - The linewidth of the field emission resonance (FER) on MoS surfaces can change significantly, by up to ten times, as the electric field increases.
  • - This variation is explained by a concept called quantum trapping, where an electron becomes temporarily trapped in a potential well because of its wave properties after relaxation from a resonance state.
  • - The Pauli exclusion principle plays a role in lengthening the lifetimes of resonant electrons, allowing them to coexist with relaxed electrons and leading to a notably reduced linewidth of about 12 meV.
View Article and Find Full Text PDF

Due to the widespread applications of biosensors, such as in magnetic resonance imaging, cancer detection and drug delivery, the use of superparamagnetic materials for preparing biosensors has increased greatly. We report herein on a strategy toward fabrication of a nanoscale biosensor composed of superparamagnetic films. On increasing the film thickness of magnetic layers, a phase transition typically occurs from either a low-Curie-temperature state or a superparamagnetic state to a ferromagnetic state.

View Article and Find Full Text PDF

Compound formation at a metal/semiconductor interface plays crucial roles in the properties of many material systems. Applications of Ni silicides span numerous areas and have the potential to be used as new functionalities. However, the magnetic properties of ultrathin Ni layers on silicon surfaces and related chemical compositions at the interface are not fully understood and the influence of Ag additives on the reactivity of Ni/Si(111) remain unclear.

View Article and Find Full Text PDF

We elucidate that the tip sharpness in scanning tunneling microscopy (STM) can be characterized through the number of field-emission (FE) resonances. A higher number of FE resonances indicates higher sharpness. We observe empty quantum well (QW) states in Pb islands on Cu(111) under different tip sharpness levels.

View Article and Find Full Text PDF

Field emission (FE) resonance (or Gundlach oscillation) in scanning tunneling microscopy (STM) is a phenomenon in which the FE electrons emitted from the microscope tip couple into the quantized standing-wave states within the STM tunneling gap. Although the occurrence of FE resonance peaks can be semi-quantitatively described using the triangular potential well model, it cannot explain the experimental observation that the number of resonance peaks may change under the same emission current. This study demonstrates that the aforementioned variation can be adequately explained by introducing a field enhancement factor that is related to the local electric field at the tip apex.

View Article and Find Full Text PDF

Using ultrahigh-vacuum low-temperature scanning tunneling microscopy and spectroscopy combined with first principles density functional theory calculations, we have investigated structural and electronic properties of pristine and potassium (K)-deposited picene thin films formed in situ on a Ag(111) substrate. At low coverages, the molecules are uniformly distributed with the long axis aligned along the [112̄] direction of the substrate. At higher coverages, ordered structures composed of monolayer molecules are observed, one of which is a monolayer with tilted and flat-lying molecules resembling a (11̄0) plane of the bulk crystalline picene.

View Article and Find Full Text PDF

We demonstrate that the Raman intensities of G and 2D bands of a suspended graphene can be enhanced using a gold tip with an apex size of 2.3 μm. The enhancement decays with the tip-graphene distance exponentially and remains detectable at a distance of 1.

View Article and Find Full Text PDF

We demonstrate a polymer-free method that can routinely transfer relatively large-area graphene to any substrate with advanced electrical properties and superior atomic and chemical structures as compared to the graphene sheets transferred with conventional polymer-assisted methods. The graphene films that are transferred with polymer-free method show high electrical conductance and excellent optical transmittance. Raman spectroscopy and X-ray/ultraviolet photoelectron spectroscopy also confirm the presence of high quality graphene sheets with little contamination after transfer.

View Article and Find Full Text PDF