Publications by authors named "Wei-Ben Wang"

The nanostructure of the light emissive layer (EL) of polymer light emitting diodes (PLEDs) was investigated using force modulation microscopy (FMM) and scanning time-of-flight secondary ion mass spectrometry (ToF-SIMS) excited with focused Bi(3)(2+) primary beam. Three-dimensional nanostructures were reconstructed from high resolution ToF-SIMS images acquired with different C(60)(+) sputtering times. The observed nanostructure is related to the efficiency of the PLED.

View Article and Find Full Text PDF

The efficiency of highly efficient blue, green, red, and white organic light-emitting diodes (OLEDs) has been substantially advanced through the use of high surface-charge nanodots embedded in a nonemissive layer. For example, the blue OLED's markedly high initial power efficiency of 18.0 lm W(-1) at 100 cd m(-2) was doubled to 35.

View Article and Find Full Text PDF

By using 10 kV C(60)(+) and 200 V Ar(+) ion co-sputtering, a crater was created on the light-emitting layer of phosphorescent polymer light-emitting diodes, which consisted of a poly(9-vinyl carbazole) (PVK) host doped with a 24 wt % iridium(III)bis[(4,6-difluorophenyl)pyridinato-N,C(2)] (FIrpic) guest. A force modulation microscope (FMM) was used to analyze the nanostructure at the flat slope near the edge of the crater. The three-dimensional distribution of PVK and FIrpic was determined based on the difference in their mechanical properties from FMM.

View Article and Find Full Text PDF

Solution processable fullerene and copolymer bulk heterojunctions are widely used as the active layers of solar cells. In this work, scanning time-of-flight secondary ion mass spectrometry (ToF-SIMS) is used to examine the distribution of [6,6]phenyl-C61-butyric acid methyl ester (PCBM) and regio-regular poly(3-hexylthiophene) (rrP3HT) that forms the bulk heterojunction. The planar phase separation of P3HT:PCBM is observed by ToF-SIMS imaging.

View Article and Find Full Text PDF

By sputtering organic films with 10 kV, 10 nA C60+ and 0.2 kV, 300 nA Ar+ ion beams concurrently and analyzing the newly exposed surface with X-ray photoelectron spectroscopy, organic thin-film devices including an organic light-emitting diode and a polymer solar cell with an inverted structure are profiled. The chemical composition and the structure of each layer are preserved and clearly observable.

View Article and Find Full Text PDF

A buckminsterfullerene (C(60)) ion beam was used for X-ray photoelectron spectrometry depth profiling of various organic thin films. Specimens representing different interfaces in organic light-emitting diode devices, including hole-conducting poly(ethylenedioxythiophene), poly(styrenesulfonic acid) (PEDOT:PSS) thin films on ITO with and without polysilicic acid doping, light-emitting Ir-containing 4,4'-bis(carbazol-9-yl)biphenyl (CBP) molecules on PEDOT:PSS, and electron-conducting 2,2',2' '(1,3,5-benzinetriyl)tris(1-phenyl-1-H-benzimidazole) (TPBi) molecules on CBP, were studied. In all cases, a clear multilayer structure was observed.

View Article and Find Full Text PDF