Publications by authors named "Wei-An Xu"

The bacterial communities on microplastics in marine and freshwater environments have been described by many studies. However, the migration and transportation processes of bacterial communities on microplastics in estuarine areas remain unclear. In this study, the bacterial communities on three substrates (microplastics, surface water and sediment) in estuarine areas (the Haihe Estuary (HHE) in Bohai Bay, China) were investigated based on 16S rRNA sequencing.

View Article and Find Full Text PDF

Antibiotics have been widely detected in the ocean and have various impacts on the environment, while knowledge of their chronic influence on phytoplankton, especially red tide algae, is still limited. Dinoflagellates and green algae are common phytoplankton in marine ecosystems. The former is the main red tide algae, and the latter is an important primary producer.

View Article and Find Full Text PDF

The colonization characteristics of bacterial communities on microplastics or plastic debris (PD) have generated great concern in recent years. However, the influence of environmental factors and polymer types on the formation of bacterial communities on PD in estuarine areas is less studied. To gain additional insights, five types of PD (polyvinyl chloride, polypropylene, polyethylene, polystyrene, and polyurethane) were exposed for three-time periods (two weeks, four weeks, and six weeks) in the Haihe Estuary.

View Article and Find Full Text PDF

The 6:2 chlorinated polyfluoroalkyl ether sulfonic acids (6:2 Cl-PFAES), 2,3,3,3-tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy)-propanoic acid (HFPO-DA) and perfluoroethylcyclohexane sulfonate (PFECHS) are emerging per- and polyfluoroalkyl substances (PFASs) that are being applied to replace phased-out PFASs, which have high persistency, high bioaccumulation potential and high toxicity. Recently, these emerging PFASs were observed in estuary and marine areas with a pollution level of ng/L. In this study, three levels (10 ng L, 100 ng L and 1000 ng L) for these PFASs were selected to investigate the response of marine Chlorella sp.

View Article and Find Full Text PDF

The protective effects of four osmolytes (trehalose, dimethysulfoxide, glycine and proline) on the conformational stability and aggregation of guanidine-denatured yeast alcohol dehydrogenase (YADH) have been investigated in this paper. The results show that the four osmolytes protect YADH against unfolding and inactivation by reducing ki (inactivation rate constants), increasing DeltaDeltaGi (transition free energy changes at 25 degrees C), increasing Cm (value for the midpoint of denaturation) and decreasing its ANS-binding fluorescence intensity. Furthermore, these osmolytes can prevent YADH aggregation in a concentration-dependent manner during YADH refolding.

View Article and Find Full Text PDF

Tyrosinase plays a core role in melanogenesis of the various organisms. Therefore, the regulation of the tyrosinase activity is directly related with melanin synthesis. In this study, we investigated the Cl(-)-induced inhibition of human tyrosinase and the potent role of Cl(-) as a negative regulator in melanogenesis.

View Article and Find Full Text PDF

We found that Zn(2+) conspicuously inactivated tyrosinase in a mixed-type inhibition manner: the final level of residual activity was abolished at the equilibrium state with concentration of 0.25 mM Zn(2+). Changes of both K(m) and V(max) by various concentrations of Zn(2+) in Lineweaver-Burk plot were observed.

View Article and Find Full Text PDF