Publications by authors named "Wei Zhongyan"

Salivary proteins secreted by phytophagous insects play pivotal roles in plant-insect interactions. A salivary protein RpSP27, from the stinkbug Riptortus pedestris, a devastating pest on soybean, was selected for studying due to its ability to induce cell death and activate immune responses in plants. RpSP27 localized to the endoplasmic reticulum and triggered reactive oxygen species burst.

View Article and Find Full Text PDF

Peas (Pisum sativum L.) are widely cultivated in temperate regions and are susceptible hosts for various viruses across different families. The discovery and identification of new viruses in peas has significant implications for field disease management.

View Article and Find Full Text PDF

Herbivorous insects employ an array of salivary proteins to aid feeding. However, the mechanisms behind the recruitment and evolution of these genes to mediate plant-insect interactions remain poorly understood. Here, we report a potential horizontal gene transfer (HGT) event from bacteria to an ancestral bug of Eutrichophora.

View Article and Find Full Text PDF

Lysine acetylation is a dynamic post-translational modification of proteins. Extensive studies have revealed that the acetylation modulated by histone acetyltransferases and histone deacetylases (HDACs) plays a crucial role in regulating protein function. However, there has been limited focus on how HDACs regulate jasmonic acid (JA) biosynthesis in plants.

View Article and Find Full Text PDF

Plant viruses have multiple strategies to counter and evade the host's antiviral immune response. However, limited research has been conducted on the antiviral defense mechanisms commonly targeted by distinct types of plant viruses. In this study, we discovered that NUCLEAR FACTOR-YC (NF-YC) and NUCLEAR FACTOR-YA (NF-YA), 2 essential components of the NF-Y complex, were commonly targeted by viral proteins encoded by 2 different rice (Oryza sativa L.

View Article and Find Full Text PDF

Watermelon silver mottle virus (WSMoV), a member of the genus Orthotospovirus of the family Bunyaviridae, was first identified in watermelon in Okinawa prefecture, in Japan (Iwaki et al. 1984). Subsequently, it was reported in a variety of solanaceae and cucurbitaceae crops such as tomato, pepper, and watermelon (Jones et al.

View Article and Find Full Text PDF

Cowpea mild mottle virus (CPMMV) is a global plant virus that poses a threat to the production and quality of legume crops. Early and accurate diagnosis is essential for effective managing CPMMV outbreaks. With the advancement in isothermal recombinase polymerase amplification and lateral flow strips technologies, more rapid and sensitive methods have become available for detecting this pathogen.

View Article and Find Full Text PDF

Alternative splicing (AS) is an important form of post transcriptional modification present in both animals and plants. However, little information was obtained about AS events in response to plant virus infection. In this study, we conducted a genome-wide transcriptome analysis on AS change in rice infected by a devastating virus, Rice stripe virus (RSV).

View Article and Find Full Text PDF

Salicylic acid (SA) and jasmonic acid (JA) are plant hormones that typically act antagonistically in dicotyledonous plants and SA and JA signaling is often manipulated by pathogens. However, in monocotyledonous plants, the detailed SA-JA interplay in response to pathogen invasion remains elusive. Here, we show that different types of viral pathogen can disrupt synergistic antiviral immunity mediated by SA and JA via OsNPR1 in the monocot rice.

View Article and Find Full Text PDF

Riptortus pedestris (Fabricius), one of the major piercing-sucking insects in soybeans, causes delayed plant senescence and abnormal pods, known as staygreen syndrome. Recent research has shown that direct feeding of this insect is the major cause of soybean staygreen syndrome. However, it remains unclear whether R.

View Article and Find Full Text PDF

Plants rely on various receptor-like proteins and receptor-like kinases to recognize and defend against invading pathogens. However, research on the role of receptor-like proteins in plant antiviral defense, particularly in rice-virus interactions, is limited. In this study, we identified a receptor-like gene, , which was significantly induced upon infection with southern rice black-streaked dwarf virus (SRBSDV) infection.

View Article and Find Full Text PDF

Introduction: Plant auxin response factors (ARFs) play an irreplaceable role in regulating the expression of auxin response genes. Our previous studies have indicated that auxin response factor OsARF17 plays a crucial role in plant defense against diverse rice viruses.

Methods: Utilizing a comparative transcriptome analysis of Rice stripe mosaic virus (RSMV)-inoculated OsARF17 mutant rice plants, to further elucidate the molecular mechanism of OsARF17 in antiviral defense pathway.

View Article and Find Full Text PDF

The bean bug (Riptortus pedestris), one of the most important pests of soybean, causes staygreen syndrome, delaying plant maturation and affecting pod development, resulting in severe crop yield loss. However, little is known about the underlying mechanism of this pest. In this study, we found that a salivary secretory protein, Rp614, induced cell death in nonhost Nicotiana benthamiana leaves.

View Article and Find Full Text PDF

Insect-specific virus (ISV) is one of the most promising agents for the biological control of insects, which is abundantly distributed in hematophagous insects. However, few ISVs have been reported in (Fabricius), one of the major pests threatening soybeans and causing great losses in yield and quality. In this work, field was collected from six soybean-producing regions in China, and their virome was analyzed with the metatranscriptomic approach.

View Article and Find Full Text PDF

Soybean staygreen syndrome, characterized by delayed leaf and stem senescence, abnormal pods, and aborted seeds, has recently become a serious and prominent problem in soybean production. Although the pest Riptortus pedestris has received increasing attention as the possible cause of staygreen syndrome, the mechanism remains unknown. Here, we clarify that direct feeding by R.

View Article and Find Full Text PDF

Plant viruses adopt diverse virulence strategies to inhibit host antiviral defense. However, general antiviral defense directly targeted by different types of plant viruses have rarely been studied. Here, we show that the single rice DELLA protein, SLENDER RICE 1 (SLR1), a master negative regulator in Gibberellin (GA) signaling pathway, is targeted by several different viral effectors for facilitating viral infection.

View Article and Find Full Text PDF
Article Synopsis
  • Soybean is a crucial agricultural crop providing food, oil, and protein, integral to human nutrition, but breeding for high protein content and yield poses challenges due to negative correlations between these traits.
  • The genetic variability within soybean germplasm is key to developing varieties that balance high protein content and yield, thus supporting sustainable protein production.
  • The paper explores soybean’s origins, current production status, genetic traits influencing protein levels, and future prospects for breeding high-protein soybean varieties using advanced research methods.
View Article and Find Full Text PDF

Soybean plant height and branching affect plant architecture and yield potential in soybean. In this study, the mutant was obtained by treating the cultivar Zhongpin 661 with ethylmethane sulfonate. The mutant plants were shorter and more branched than the wild type.

View Article and Find Full Text PDF

Rice stripe virus (RSV) has a serious effect on rice production. Our previous research had shown that RSV P2 plays important roles in RSV infection, so in order to further understand the effect of P2 on rice, we used Tandem Mass Tag (TMT) quantitative proteomics experimental system to analyze the changes of protein in transgenic rice expressing P2 for the first time. The results of proteomics showed that a total of 4,767 proteins were identified, including 198 up-regulated proteins and 120 down-regulated proteins.

View Article and Find Full Text PDF

NF-Y transcription factors are known to play many diverse roles in the development and physiological responses of plants but little is known about their role in plant defense. Here, we demonstrate the negative roles of rice NF-YA family genes in antiviral defense against two different plant viruses, Rice stripe virus (RSV, Tenuivirus) and Southern rice black-streaked dwarf virus (SRBSDV, Fijivirus). RSV and SRBSDV both induced the expression of OsNF-YA family genes.

View Article and Find Full Text PDF

The movement of some plant RNA viruses is mediated by triple gene block (TGB) proteins, which cooperate to transfer the viral genome from cell to cell through plasmodesmata. Here, we investigated the function of the TGB proteins of cowpea mild mottle virus (CPMMV; genus , family ), which causes severe damage to soybean production. Subcellular localization experiments demonstrated that TGBp1 and TGBp3 were localized to the endoplasmic reticulum (ER), plasmodesmata (PD) and nucleus in leaves.

View Article and Find Full Text PDF
Article Synopsis
  • * In this study, 20 OTU genes were identified in the rice genome, classified into four groups based on phylogenetic analysis, and were assessed for their structures, motifs, and distributions.
  • * Gene expression analysis showed that rice OTU genes are specifically responsive to various plant hormones and significantly affected by different rice viruses, highlighting their involvement in hormone signaling and virus response.
View Article and Find Full Text PDF

The bean bug, (Fabricius), is one of the most important soybean pests. It damages soybean leaves and pods with its piercing-sucking mouthparts, causing staygreen-like syndromes in the infested crops. During the feeding process, secretes a mixture of salivary proteins, which play critical roles in the insect-plant interactions and may be responsible for staygreen-like syndromes.

View Article and Find Full Text PDF

Plants sense pathogen attacks using a variety of receptors at the cell surface. The LRR receptor-like proteins (RLP) and receptor-like kinases (RLK) are widely reported to participate in plant defence against bacterial and fungal pathogen invasion. However, the role of RLP and RLK in plant antiviral defence has rarely been reported.

View Article and Find Full Text PDF