This study focuses on the heavily Mg-doped GaN in which the passivation effect of hydrogen and the compensation effect of nitrogen vacancies (V) impede its further development. To investigate those two factors, H ion implantation followed by thermal annealing was performed on the material. The evolution of relevant defects (H and V) was revealed, and their distinct behaviors during thermal annealing were compared between different atmospheres (N/NH).
View Article and Find Full Text PDFRosin derivatives such as dehydroabietic acid and dehydroabietic amine belonging to diterpenoids have similar structure with androgen that inhibited the occurrence and development of prostate cancer. In this study, the effects and possible mechanism of the rosin derivative IDOAMP on prostate cancer were investigated. Our results showed that IDOAMP effectively inhibited cell viabilities of LNCaP, PC3, and DU145 prostate cells.
View Article and Find Full Text PDFSketching on the Social Exchange Theory (SET), the present study aims to investigate the direct relationship between training and development, work environment, and job satisfaction with employee retention. The contingent role of transformational leadership was also analysed under the Situational Leadership Theory (SLT). Accordingly, we collected data from 287 employees of SMEs in northern China by employing a convenience sampling approach, exhibiting a response rate of 57.
View Article and Find Full Text PDFThis study aimed to examine the integrated relationships of business ties, political ties, sustainable leadership, and frugal innovation. The correlation was assessed with the consideration of social network and situational leadership theories. Data was collected from 363 Small and Medium Enterprises (SMEs) employees in Pakistan with a response rate of 72.
View Article and Find Full Text PDFThe research on metal halide perovskite light-emitting diodes (PeLEDs) with green and infrared emission has demonstrated significant progress in achieving higher functional performance. However, the realization of stable pure-blue (≈470 nm wavelength) PeLEDs with increased brightness and efficiency still constitutes a considerable challenge. Here, a novel acid etching-driven ligand exchange strategy is devised for achieving pure-blue emitting small-sized (≈4 nm) CsPbBr perovskite quantum dots (QDs) with ultralow trap density and excellent stability.
View Article and Find Full Text PDFWe demonstrated stimulated emission at 288 nm from a silicon-doped AlGaN-based multiple-quantum-well (MQW) ultraviolet (UV) laser grown on sapphire. The optical pumping threshold energy density of the UV laser was 64 mJ/cm2, while lasing behavior was not observed in undoped AlGaN MQWs. This means silicon doping could effectively reduce the lasing threshold of UV lasers, and the mechanism was studied showing that the silicon-doped AlGaN MQWs had a 41% higher internal quantum efficiency (IQE) compared with the undoped one.
View Article and Find Full Text PDFA surface plasmon (SP)-enhanced nanoporous GaN-based green LED based on top-down processing technology has been successfully fabricated. This SP-enhanced LED consists of nanopores passing through the multiple quantum wells (MQWs) region, with Ag nanorod array filled in the nanopores for SP-MQWs coupling and thin Al(2)O(3) passivation layer for electrical protection. Compared with nanoporous LED without Ag nanorods, the electroluminescence (EL) peak intensity for the SP-enhanced LED was greatly enhanced by 380% and 220% at an injection current density of 1 and 20A/cm(2), respectively.
View Article and Find Full Text PDFWe reported that the peak efficiency together with the efficiency droop in InGaN-based light emitting diodes could be effectively modified through a simple and low-cost etch-regrown process in n-GaN layer. The etched n-GaN template contained pyramid arrays with inclined side planes. The following lateral overgrowth process from the etched n-GaN template substantially reduced the edge dislocation density and residential compressive strain in epilayers.
View Article and Find Full Text PDFPolarization-reversed electron-blocking structure, which had negative polarization charges localized at the interface between the last quantum barrier (LQB) and electron-blocking layer (EBL), was demonstrated to remarkably improve the light-emitting efficiency of GaN-based blue light-emitting diodes (LEDs) numerically and experimentally. The improvement was attributed to the enhanced electron-blocking effectiveness by the elevated conduction band nearby the LQB/EBL interface. Nevertheless, the efficiency droop was not mitigated because the decrease of electron-leakage was accompanied by the increase of Auger recombination.
View Article and Find Full Text PDFNanopillar AlGaN/GaN multiple quantum wells ultraviolet light-emitting diodes (LEDs) were fabricated by nanosphere lithography and dry-etching. The optical properties of the nanopillar LEDs were characterized by both temperature-dependent and time-resolved photoluminescence measurements. Compared to an as-grown sample, the nanopillar sample has a PL emission peak blue-shift of 7 meV, a 42% enhanced internal quantum efficiency at room temperature and a reduced radiative recombination lifetime from 870 picosecond to 621 picosecond at 7K.
View Article and Find Full Text PDFNanopillar AlGaN/GaN multiple quantum wells ultraviolet light-emitting diodes (LEDs) were fabricated by nanosphere lithography and dry-etching. The optical properties of the nanopillar LEDs were characterized by both temperature-dependent and time-resolved photoluminescence measurements. Compared to an as-grown sample, the nanopillar sample has a PL emission peak blue-shift of 7 meV, a 42% enhanced internal quantum efficiency at room temperature and a reduced radiative recombination lifetime from 870 picosecond to 621 picosecond at 7K.
View Article and Find Full Text PDF