Publications by authors named "Wei Wen Cai"

Although there are several treatments available for gastric cancer (GC), the prognosis of the disease is still poor due to many factors, such as late diagnosis and tumor heterogeneity. To identify potential therapeutic targets, bioinformatics techniques and clinical sample validation were employed and prostate transmembrane protein androgen induced 1 (PMEPA1) was selected for further study. In the present study, we found that elevated PMEPA1 expression correlates with a worse prognosis and weaker anti-tumor immunity in GC patients.

View Article and Find Full Text PDF

Osteosarcoma is the primary malignant cancer of bone and particularly affects adolescents and young adults, causing debilitation and sometimes death. As a model for human osteosarcoma, we have been studying p53(+/-) mice, which develop osteosarcoma at high frequency. To discover genes that cooperate with p53 deficiency in osteosarcoma formation, we have integrated array comparative genomic hybridization, microarray expression analyses in mouse and human osteosarcomas, and functional assays.

View Article and Find Full Text PDF

Background: Most machine-learning classifiers output label predictions for new instances without indicating how reliable the predictions are. The applicability of these classifiers is limited in critical domains where incorrect predictions have serious consequences, like medical diagnosis. Further, the default assumption of equal misclassification costs is most likely violated in medical diagnosis.

View Article and Find Full Text PDF

Separase is an endopeptidase that separates sister chromatids by cleaving cohesin Rad21 during the metaphase-to-anaphase transition. Conditional expression of Separase in tetracycline-inducible diploid FSK3 mouse mammary epithelial cells with both p53 WT and mutant (Ser-233-234) alleles of unknown physiological significance develops aneuploidy within 5 days of Separase induction in vitro. Overexpression of Separase induces premature separation of chromatids, lagging chromosomes, and anaphase bridges.

View Article and Find Full Text PDF

Osteosarcoma is a primary malignant tumor of bone arising from primitive bone-forming mesenchymal cells and accounts for approximately 60% of malignant bone tumors. Our comparative genomic hybridization (CGH) studies have identified frequent amplification at 6p12-p21, 12q13-q15, and 17p11.2 in osteosarcoma.

View Article and Find Full Text PDF

Despite the widespread application of microarray imaging for biomedical imaging research, barriers still exist regarding its reliability for clinical use. A critical major problem lies in accurate spot segmentation and the quantification of gene expression level (mRNA) from the microarray images. A variety of commercial and research freeware packages are available, but most cannot handle array spots with complex shapes such as donuts and scratches.

View Article and Find Full Text PDF

Phosphatase and tensin homologue deleted from chromosome 10 (Pten) is expressed aberrantly in non-small cell lung cancer cells, but the role of Pten in lung neoplasia has not been fully elucidated. In this study, we used a genetic approach to inactivate Pten in the bronchial epithelium of mice. Although, by itself, Pten inactivation had no discernible effect on bronchial epithelial histology, it accelerated lung tumorigenesis initiated by oncogenic K-ras, causing more rapid lethality than that induced by oncogenic K-ras alone (8 weeks versus 24 weeks of median duration of survival, respectively).

View Article and Find Full Text PDF

Fluorescence in situ hybridization (FISH) banding approaches are standard for the exact characterization of simple, complex, and even cryptic chromosomal aberrations within the human genome. The most frequently applied FISH banding technique is the multicolor banding approach, also abbreviated as m-band, MCB, or in its whole genomic variant multitude MCB (mMCB). MCB allows the differentiation of chromosome region-specific areas at the GTG band and sub-band level and is based on region-specific microdissection libraries, producing changing fluorescence intensity ratios along the chromosomes.

View Article and Find Full Text PDF

Glioma pathogenesis-related protein 1 (GLIPR1), a novel p53 target gene, is down-regulated by methylation in prostate cancer and has p53-dependent and -independent proapoptotic activities in tumor cells. These properties suggest an important tumor suppressor role for GLIPR1, yet direct genetic evidence of a tumor suppressor function for GLIPR1 is lacking and the molecular mechanism(s), through which GLIPR1 exerts its tumor suppressor functions, has not been shown. Here, we report that the expression of GLIPR1 is significantly reduced in human prostate tumor tissues compared with adjacent normal prostate tissues and in multiple human cancer cell lines.

View Article and Find Full Text PDF

Array-based comparative genomic hybridization (array CGH) is becoming a prominent genomic technology with many important applications in biomedical research. Although several platforms of this technology have been published, successful implementation of this technology still demands technical expertise. Here, we describe the technology that has been developed and improved in the past few years are described.

View Article and Find Full Text PDF

The underlying genetic cause of mental retardation (MR) remains unknown in about half of the cases. Recently, using whole genome array comparative genomic hybridization (array-CGH), submicroscopic genetic imbalances have been detected in up to 20% of patients with an unexplained MR, dysmorphic features, and apparently normal karyotype. Here, we present a 12-year-old girl with features of basal cell nevus syndrome (BCNS), pulmonary valve stenosis, and MR, in whom array-CGH identified a 7.

View Article and Find Full Text PDF

Mutations in ras and p53 are the most prevalent mutations found in human nonmelanoma skin cancers. Although some p53 mutations cause a loss of function, most result in expression of altered forms of p53, which may exhibit gain-of-function properties. Therefore, understanding the consequences of acquiring p53 gain-of-function versus loss-of-function mutations is critical for the generation of effective therapies for tumors harboring p53 mutations.

View Article and Find Full Text PDF

Small supernumerary marker chromosomes (sSMCs) are a morphologically heterogeneous group of additional structurally abnormal chromosomes that cannot be identified unambiguously by conventional banding techniques alone. Molecular cytogenetic methods enable detailed characterization of sSMCs; however, in many cases interpretation of their clinical significance is problematic. The aim of our study was to characterize precisely sSMCs identified in three patients with dysmorphic features, psychomotor retardation and multiple congenital anomalies.

View Article and Find Full Text PDF

Serial analysis of gene expression from aggressive mammary tumors derived from transplantable p53 null mouse mammary outgrowth lines revealed significant up-regulation of Tfdp1 (transcription factor Dp1), Lamp1 (lysosomal membrane glycoprotein 1) and Gas6 (growth arrest specific 6) transcripts. All of these genes belong to the same linkage cluster, mapping to mouse chromosome band 8A1. BAC-array comparative genomic hybridization and fluorescence in situ hybridization analyses revealed genomic amplification at mouse region ch8A1.

View Article and Find Full Text PDF

We describe our findings in a 46,XY female with a clinical features of Genitopatellar syndrome (GPS) and confirmed hermaphroditism with ovotestes, and five additional patients with GPS. GPS is a genetic disorder characterized by renal and genital anomalies, joint dislocation, aplastic or hypoplastic and often displaced patellae, minor facial anomalies, and mental retardation. The genital anomalies clearly distinguish GPS from nail-patella syndrome (NPS) that has similar features, but additionally shows hypoplastic finger- and toenails as found in the 46,XY female.

View Article and Find Full Text PDF

The Aurora-A kinase gene is amplified in a subset of human tumors and in radiation-induced lymphomas from p53 heterozygous mice. Normal tissues from p53-/- mice have increased Aurora-A protein levels, but lymphomas from these mice exhibit heterozygous deletions of Aurora-A and/or reduced protein expression. A similar correlation between low p53 levels and Aurora-A gene deletions and expression is found in human breast cancer cell lines.

View Article and Find Full Text PDF

In this report we present a spontaneous mouse mutant, named Polypodia (Ppd), that primarily exhibits ectopic, ventral/caudal limbs and associated pelvic girdle malformation or duplication. Less penetrant features include diphallia, microphthalmia, small kidney, curled or kinked tail, forelimb anomaly, and skin papillae. Ppd mice have a normal karyotype and no large-scale genomic deletions or insertions by BAC-based array comparative genomic hybridization (CGH).

View Article and Find Full Text PDF

This article summarizes the proceedings of a symposium presented at the 2005 annual meeting of the Research Society on Alcoholism in Santa Barbara, California. The organizer was James M. Sikela, and he and Michael F.

View Article and Find Full Text PDF
Article Synopsis
  • Tumours arise from a clonal expansion of cells with mutations in oncogenes and tumour suppressor genes, leading to cancer development.
  • The study used advanced genomic techniques to identify recurring DNA alterations in lung adenocarcinoma cell lines linked to various tobacco exposure levels.
  • Key genes like EEF1A2 and KLF6 were highlighted as potential oncogenes and tumour suppressor genes, showcasing an effective method for pinpointing cancer-related genes using microarray data.
View Article and Find Full Text PDF

Although radiation can directly induce DNA damage and is a known human and animal carcinogen, the number of genetic changes in radiation-induced tumors, and the pathways responsible for generating them, are unknown. We have used high-density BAC arrays covering >95% of the mouse genome for analysis of genomic patterns of aberrations in spontaneous and radiation-induced mouse lymphomas. The majority of radiation-induced tumors exhibit one of three 'signatures' based on gene copy number changes.

View Article and Find Full Text PDF

Molecular cytogenetics allows the identification of cryptic chromosome rearrangements, which is clinically useful in mentally retarded and/or dysmorphic individuals with normal results from conventional cytogenetics analysis. We report on a 3-year-old girl with mental retardation, growth deficiency, speech delay, and dysmorphic features including hypertelorism, upslanting palpebral fissures, midfacial hypoplasia, and posteriorly rotated ears. The G-banding analysis showed a 46,XX,t(3;8)(q26.

View Article and Find Full Text PDF

RNA transcript levels in the syphilis spirochete Treponema pallidum subsp. pallidum (Nichols) isolated from experimentally infected rabbits were determined by the use of DNA microarray technology. This characterization of the T.

View Article and Find Full Text PDF

By analyzing genomic copy-number differences using high-resolution mouse whole-genome BAC arrays, we uncover substantial differences in regional DNA content between inbred strains of mice. The identification of these apparently common segmental polymorphisms suggests that these differences can contribute to genetic variability and pathologic susceptibility.

View Article and Find Full Text PDF

Chromosomal abnormalities, such as deletions and duplications, are characterized by specific and often complex phenotypes resulting from an imbalance in normal gene dosage. However, routine chromosome banding is not sensitive enough to detect subtle chromosome aberrations (<5-10 Mb). Array-based comparative genomic hybridization (array CGH) is a powerful new technology capable of identifying chromosomal imbalance at a high resolution by co-hybridizing differentially labeled test and control DNAs to a microarray of genomic clones.

View Article and Find Full Text PDF

Using LoxP/Cre technology, we generated a knockout mouse homozygous for a null mutation in exon 2 of Cav1. In male Cav1-/- animals, we observed a dramatic increase in the incidence of urinary calcium stone formation. In 5-month-old male mice, the incidence of early urinary calculi was 67% in Cav1-/- mice compared to 19% in Cav1+/+ animals.

View Article and Find Full Text PDF