Autophagy has been shown to facilitate replication or production of avian reovirus (ARV); nevertheless, how ARV induces autophagy remains largely unknown. Here, we demonstrate that the nonstructural protein p17 of ARV functions as an activator of autophagy. ARV-infected or p17-transfected cells present a fast and strong induction of autophagy, resulting in an increased level of autophagic proteins Beclin 1 and LC3-II.
View Article and Find Full Text PDFThe specific cell pathways involved in bovine ephemeral fever virus (BEFV) cell entry have not been determined. In this work, colocalization of the M protein of BEFV with clathrin or dynamin 2 was observed under a fluorescence microscope. To better understand BEFV entry, we carried out internalization studies with a fluorescently labeled BEFV by using a lipophilic dye, 3,30-dilinoleyloxacarbocyanine perchlorate (DiO), further suggesting that BEFV uses a clathrin-mediated endocytosis pathway.
View Article and Find Full Text PDFVery little is known about the mechanism of cell entry of avian reovirus (ARV). The aim of this study was to explore the mechanism of ARV entry and subsequent infection. Cholesterol mainly affected the early steps of the ARV life cycle, because the presence of cholesterol before and during viral adsorption greatly blocked ARV infectivity.
View Article and Find Full Text PDFThe effects of avian reovirus (ARV) p17 protein on cell cycle progression and host cellular protein translation were studied. ARV infection and ARV p17 transfection resulted in the accumulation of infected and/or transfected cells in the G(2)/M phase of the cell cycle. The accumulation of cells in the G(2)/M phase was accompanied by upregulation and phosphorylation of the G(2)/M-phase proteins ATM, p53, p21(cip1/waf1), Cdc2, cyclin B1, Chk1, Chk2, and Cdc25C, suggesting that p17 induces a G(2)/M cell cycle arrest through activation of the ATM/p53/p21(cip1/waf1)/Cdc2/cyclin B1 and ATM/Chk1/Chk2/Cdc25C pathways.
View Article and Find Full Text PDFViral infection usually influences cellular protein synthesis either actively or passively via modification of various translation initiation factors. Here we demonstrated that infection with avian reovirus (ARV) interfered with cellular protein synthesis. This study demonstrated for the first time that ARV influenced the phosphorylation of translation initiation factors including eIF4E and eIF-4G.
View Article and Find Full Text PDFThree cDNA sequences encoding the gonadotropin subunits, common glycoprotein alpha subunit (GTHalpha), FSHbeta and LHbeta subunits were isolated from marbled eel. The cDNA of GTHalpha encodes 116 amino acids with a signal peptide of 24 amino acids and a mature peptide of 92 amino acids. The FSHbeta subunit consists of 127 amino acids with a 22 amino acid signal peptide and a 105 amino acid mature peptide, while the LHbeta subunit consists of 140 amino acids with a 24 amino acid signal peptide and a 116 amino acid mature peptide.
View Article and Find Full Text PDF