Post-polymerization modification (PPM) via direct C-H functionalization is a powerful synthetic strategy to convert polymer feed-stocks into value-added products. We found that a metal-free, Se-catalyzed allylic C-H amination provided an efficient method for PPM of polynorbornenes (PNBs) produced via ring-opening metathesis polymerization. Inherent to the mechanism of the allylic amination, PPM on PNBs preserved the alkene functional groups along the polymer backbone, while also avoiding transposition of the double bonds.
View Article and Find Full Text PDFBackground: Pediatric gliomas comprise a diverse set of brain tumor entities that have substantial long-term ramifications for patient survival and quality of life. However, the study of these tumors is currently limited due to a lack of authentic models. Additionally, many aspects of pediatric brain tumor biology, such as tumor cell invasiveness, have been difficult to study with currently available tools.
View Article and Find Full Text PDFHenning et al. (2022) report development of a novel class of agents, bivalent deubiquitinase (DUB)-targeting chimeras (DUBTACs), that can selectively stabilize protein targets. These findings encourage further pursuit of targeted protein stabilization as a new paradigm in chemical biology and drug discovery.
View Article and Find Full Text PDFThe selective replacement of C-H bonds in complex molecules, especially natural products like terpenoids, is a highly efficient way to introduce new functionality and/or couple fragments. Here, we report the development of a new metal-free allylic amination of alkenes that allows the introduction of a wide range of nitrogen functionality at the allylic position of alkenes with unique regioselectivity and no allylic transposition. This reaction employs catalytic amounts of selenium in the form of phosphine selenides or selenoureas.
View Article and Find Full Text PDFA palladium-catalyzed cross-coupling of 2-alkylaziridines with alkenylboronic acids to give homoallylamines is presented. The reaction is highly regioselective and stereospecific and provides convenient access to enantioenriched amines with 1,1-disubstituted, 1,2-disubstituted, and trisubstituted alkenes. The modular synthesis of a 2,5-disubstituted pyrrolidine natural product was completed in three steps and 67% overall yield.
View Article and Find Full Text PDF