Publications by authors named "Wei N Chen"

Cultivated meat, produced using cell culture technology, is an alternative to conventional meat production that avoids the risks from enteric pathogens associated with animal slaughter and processing. Cultivated meat therefore has significant theoretical microbiological safety advantages, though limited information is available to validate this. This review discusses sources and vectors of microbial contamination throughout cultivated meat production, introduces industry survey data to evaluate current industry practices for monitoring and mitigating these hazards, and highlights future research needs.

View Article and Find Full Text PDF

In food circular economy, the utilization of food manufacturing side streams (FMSS) offers significant potential instead of being discarded. However, reincorporating FMSS into the food value chain raises food safety concerns due to potential food hazards. This perspective explores food safety risks associated with circular management of FMSS by using a 'Quad-Modal hazard dynamic' approach with case studies.

View Article and Find Full Text PDF

Berries are highly perishable and susceptible to spoilage, resulting in significant food and economic losses. The use of chemicals in traditional postharvest protection techniques can harm both human health and the environment. Consequently, there is an increasing interest in creating environmentally friendly solutions for postharvest protection.

View Article and Find Full Text PDF

Mushroom is a sustainable food option and a meat substitute which yet needs some strategies to enhance sensory attributes. Especially, their taste characteristics (nonvolatile taste components: soluble sugars, organic acids, free amino acids, and 5'-nucleotides) can vary significantly due to operating conditions and parameters during different stages from farm to fork. This review is aimed to provide an overall view of the determined effects of operating conditions and parameters for mushroom taste attributes, suggestions for future research from lacking variables, and some recommendations for improving the taste perception of mushrooms.

View Article and Find Full Text PDF

Coffee agro-waste is a potential source of polyphenols with antioxidant activity and application in the food and cosmetic trades. The usage of these byproducts persists as a challenge in the industrial landscape due to their high content of purported toxic substances hindering management. This study presents a green extractive process using pulsed electric field (PEF) and microwave assisted extraction (MAE) to recover polyphenols from coffee parchment and two varieties of pulp, posing quick processing times and the use of water as the only solvent.

View Article and Find Full Text PDF

Bionanocomposites based on natural bioactive entities have gained importance due to their abundance; renewable and environmentally benign nature; and outstanding properties with applied perspective. Additionally, their formulation with biological molecules with antimicrobial, antioxidant, and anticancer activities has been produced nowadays. The present review details the state of the art and the importance of this pyrrolic compound produced by microorganisms, with interest towards , including production strategies at a laboratory level and scale-up to bioreactors.

View Article and Find Full Text PDF

Food science and technology have a fundamental and considerable overlap with medicine, and many clinically important applications were borne out of translational food science research. Globally, the food industry - through various food processing technologies - generates huge quantities of agro-waste and food processing byproducts that retain a significant biochemical potential for upcycling into important medical applications. This review explores some distinct clinical applications that are fabricable from food-based biopolymers and substances, often originating from food manufacturing side streams.

View Article and Find Full Text PDF

Brewers' spent grains (BSG) were fermented with and up to 15% of original protein was hydrolysed. Fermented BSG was then subjected to an ethanolic-alkali extraction and isolated fractions contained 61-66% protein. An evaluation of functional properties suggested that fermented extracts presented superior emulsifying abilities (15-34 m/g of activity and 16-42 min of stability), foaming properties (16-30% capacity and 7-14% stability), and water/oil binding capacities (0.

View Article and Find Full Text PDF

Modern biotechnology holds great potential for expanding the scope of fermentation to create novel foods and improve the sustainability of food production.

View Article and Find Full Text PDF

Background: Okara is a major agri-industrial by-product of the tofu and soymilk industries. Employing food-wastes as substrates for the green production of natural functional compounds is a recent trend that addresses the dual concepts of sustainable production and a zero-waste ecosystem.

Results: Extracts of unfermented okara and okara fermented with Rhizopus oligosporus were obtained using ethanol as extraction solvent, coupled with ultrasound sonication for enhanced extraction.

View Article and Find Full Text PDF

Bioactive peptides (BPs) are specific protein fragments that exert various beneficial effects on human bodies and ultimately influence health, depending on their structural properties and amino acid composition and sequences. By offering promising solutions to solve diverse health issues, the production, characterization, and applications of food-derived BPs have drawn great interest in the current literature and are of particular interest to the food and pharmaceutical industries. The microbial fermentation of protein from various sources is indubitably a novel way to produce BPs with numerous beneficial health effects.

View Article and Find Full Text PDF

Brewers' spent grains (BSGs) are nutritious food processing by-products generated in the brewing industry. In this study, in vitro digestion-fermentation was employed to examine fermented BSG using Bacillus subtilis WX-17 as functional food ingredients. Insoluble fibers in BSG were converted into soluble fibers after fermentation, giving an increase from 6.

View Article and Find Full Text PDF

Background: Food security is becoming an increasingly important global issue. Anthropogenic factors such as rapid urbanization and industrialization have strained finite resources like land and water. Therefore, against the impending threat of food security, the world can no longer rely on traditional methods to meet its needs.

View Article and Find Full Text PDF

This work aims to produce a functional probiotic beverage using okara as the sole nutrient source. Hence, okara was fermented with WX-17 in submerged liquid fermentation and the supernatant was tested. Metabolomic analysis showed that the nutritional profile of the beverage was enhanced after fermentation.

View Article and Find Full Text PDF

Food processing generates side streams that are not fully utilized and typically treated as waste materials. One of such food by-product, brewers' spent grains (BSG) are disposed in huge quantities from the beer industry annually. Submerged fermentation of BSG using WX-17, without supplementary components, is herein employed.

View Article and Find Full Text PDF

The effect of a proprietary blend of β-glucan, anthocyanins and resistant dextrin (LoGICarb™) on the (1) digestibility and (2) glycemic response of humans to white rice, were carried out. The amounts of glucose released, rapidly digestible starch, and predicted glycemic index of white rice were significantly reduced, with addition of LoGICarb™. The mean glycemic index (GI) value of white rice, were also reduced from 72 to 55.

View Article and Find Full Text PDF

Chitin and chitosan are natural amino polysaccharides that have exceptional biocompatibility in a wide range of applications such as drug delivery carriers, antibacterial agents and food stabilizers. However, conventional chemical extraction methods of chitin from marine waste are costly and hazardous to the environment. Here we report a study where shrimp waste was co-fermented with Lactobacillus plantarum subsp.

View Article and Find Full Text PDF

Extracts were extricated from raw okara and okara fermented with using a clean, green protocol; water was used as the extraction solvent and coupled with ultrasound assistance for enhanced extraction. In vitro anti-oxidant analyses for antioxidant potential and capacity, superoxide scavenging activity, and nitric oxide scavenging activity validated that fermented okara yielded superior bioactive performance compared to raw okara. Fermented okara extracts showed no toxicity to erythrocytes and successfully prevented induced haemolysis.

View Article and Find Full Text PDF

With increasing resource shortage and environmental pollution, it is preferable to utilize materials which are sustainable and biodegradable. Side-streams products generated from the food processing industry is one potential avenue that can be used in a wide range of applications. In this study, the food by-product okara was effectively reused for the extraction of cellulose.

View Article and Find Full Text PDF

Flavonoids are plant secondary metabolites with great potential in the food industry. Metabolic engineering of is a sustainable production technique. However, the current naringenin production yield is low because of inefficient enzymatic activity.

View Article and Find Full Text PDF
Article Synopsis
  • The gut microbiome is important for our health, and studying poop and pee can help us understand how microbes in our gut work with our bodies and food.
  • Researchers used a special method to identify many different compounds in the poop and pee of healthy young adults from India and China.
  • They found that people’s diets and where they come from affect the types of compounds in their poop and pee, which are linked to the bacteria living in their guts.
View Article and Find Full Text PDF

Okara is a major agro-waste produced from the soybean industry. To hydrolyze the okara and enable nutrient release, a strategy to valorize okara using solid-state fermentation with food grade Bacillus subtilis (B. subtilis) WX-17 was carried out.

View Article and Find Full Text PDF

Kaempferol is a polyphenolic compound with various reported health benefits and thus harbors considerable potential for food-engineering applications. In this study, a high-yield kaempferol-producing cell factory was constructed by multiple strategies, including gene screening, elimination of the phenylethanol biosynthetic branch, optimizing the core flavonoid synthetic pathway, supplementation of precursor PEP/E4P, and mitochondrial engineering of F3H and FLS. A total of 86 mg/L of kaempferol was achieved in strain YL-4, to date the highest production titer in yeast.

View Article and Find Full Text PDF

Terpenoids and polyphenols are high-valued plant secondary metabolites. Their high antimicrobial activities demonstrate their huge potential as natural preservatives in the food industry. With the rapid development of metabolic engineering, it has become possible to realize large-scale production of non-native terpenoids and polyphenols by using the generally recognized as safe (GRAS) strain, Saccharomyces cerevisiae, as a cell factory.

View Article and Find Full Text PDF

Background: Soybean residue (okara) is an agricultural by-product, which is rich in protein and fiber. This study evaluated a novel sequential process which combined fungal pretreatment (F) and twin screw extruder (E), to hydrolyze okara. The sequence of the pretreatment steps, and extruder at screw speeds 200 rpm (200) or 600 rpm (600), were tested.

View Article and Find Full Text PDF