The human nervous system inspires the next generation of sensory and communication systems for robotics, human-machine interfaces (HMIs), biomedical applications, and artificial intelligence. Neuromorphic approaches address processing challenges; however, the vast number of sensors and their large-scale distribution complicate analog data manipulation. Conventional digital multiplexers are limited by complex circuit architecture and high supply voltage.
View Article and Find Full Text PDFThe emulation of tactile sensory nerves to achieve advanced sensory functions in robotics with artificial intelligence is of great interest. However, such devices remain bulky and lack reliable competence to functionalize further synaptic devices with proprioceptive feedback. Here, we report an artificial organic afferent nerve with low operating bias (-0.
View Article and Find Full Text PDFIncreasing demand for bio-interfaced human-machine interfaces propels the development of organic neuromorphic electronics with small form factors leveraging both ionic and electronic processes. Ion-based organic electrochemical transistors (OECTs) showing anti-ambipolarity (OFF-ON-OFF states) reduce the complexity and size of bio-realistic Hodgkin-Huxley(HH) spiking circuits and logic circuits. However, limited stable anti-ambipolar organic materials prevent the design of integrated, tunable, and multifunctional neuromorphic and logic-based systems.
View Article and Find Full Text PDFThe development of soft and flexible devices for collection of bioelectrical signals is gaining momentum for wearable and implantable applications. Among these devices, organic electrochemical transistors (OECTs) stand out due to their low operating voltage and large signal amplification capable of transducing weak biological signals. While liquid electrolytes have demonstrated efficacy in OECTs, they limit its operating temperature and pose challenges for electronic packaging due to potential leakage.
View Article and Find Full Text PDFBrain organoids hold great potential for modeling human brain development and pathogenesis. They recapitulate certain aspects of the transcriptional trajectory, cellular diversity, tissue architecture and functions of the developing brain. In this review, we explore the engineering strategies to control the molecular-, cellular- and tissue-level inputs to achieve high-fidelity brain organoids.
View Article and Find Full Text PDFOrganic electrochemical transistors (OECTs) are one of the promising building blocks to realize next-generation bioelectronics. To date, however, the performance and signal processing capabilities of these devices remain limited by their stability and speed. Herein, the authors demonstrate stable and fast n-type organic electrochemical transistors based on a side-chain-free ladder polymer, poly(benzimidazoanthradiisoquinolinedione).
View Article and Find Full Text PDFIn the dynamic landscape of the Internet of Things (IoT), where smart devices are reshaping our world, nanomaterials can play a pivotal role in ensuring the IoT's sustainability. These materials are poised to redefine the development of smart devices, not only enabling cost-effective fabrication but also unlocking novel functionalities. As the IoT is set to encompass an astounding number of interconnected devices, the demand for environmentally friendly nanomaterials takes center stage.
View Article and Find Full Text PDFIn the pursuit of achieving zero emissions, exploring the concept of recycling metal waste from industries and workshops (i.e., waste-free) is essential.
View Article and Find Full Text PDFIntroduction: Psoriasis affects approximately 2-3% of the population worldwide, although the overall prevalence in Asia is <0.5%. Scalp psoriasis is a common initial presentation of psoriasis, which affects almost 80% of patients with psoriasis.
View Article and Find Full Text PDFIn this work, a composite strain sensor is fabricated by synthesizing MXene and deposition of polypyrrole on top of the flexible electrospun PVDF nanofibers. The fabricated sensor exhibits a conductive network constructed with MXene and polypyrrole of microcracks network structure, demonstrating its strain sensing properties. The presence of these microcracks serves as mechanical weak points, which leads to sensitivity enhancement, while the electrospun fiber substrate act as a cushion for strain loading under large deformations.
View Article and Find Full Text PDFThe rapid development of organic electrochemical transistor (OECTs)-based circuits brings new opportunities for next-generation integrated bioelectronics. The all-polymer bulk-heterojunction (BHJ) offers an attractive, inexpensive alternative to achieve efficient ambipolar OECTs, and building blocks of logic circuits constructed from them, but have not been investigated to date. Here, the first all-polymer BHJ-based OECTs are reported, consisting of a blend of new p-type ladder conjugated polymer and a state-of-the-art n-type ladder polymer.
View Article and Find Full Text PDFOrganic electrochemical transistors (OECTs) have recently attracted attention due to their high transconductance and low operating voltage, which makes them ideal for a wide range of biosensing applications. Poly-3,4-ethylenedioxythiophene:poly-4-styrenesulfonate (PEDOT:PSS) is a typical material used as the active channel layer in OECTs. Pristine PEDOT:PSS has poor electrical conductivity, and additives are typically introduced to improve its conductivity and OECT performance.
View Article and Find Full Text PDFIntroduction: Recent guidelines suggest obstructive sleep apnoea (OSA) is not an absolute contraindication for same day discharge following surgery. The aim of this systematic review was to examine the feasibility and safety of day case nasal and/or palatopharyngeal surgery in patients with OSA.
Methods: We performed a systematic search of PubMed, EMBASE and the Cochrane library.
Background: There are few data to support accurate interpretation of spirometry data in South Asia, a major global region with a high reported burden of chronic respiratory disease.
Method: We measured lung function in 7453 healthy men and women aged ≥18 years, from Bangladesh, North India, South India, Pakistan and Sri Lanka, as part of the South Asia Biobank study. First, we assessed the accuracy of existing equations for predicting normal forced vital capacity (FVC), forced expiratory volume in 1 s (FEV) and FEV/FVC ratio.
Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) based organic electrochemical transistors (OECTs) have proven to be one of the most versatile platforms for various applications including bioelectronics, neuromorphic computing and soft robotics. The use of PEDOT:PSS for OECTs originates from its ample mixed ionic-electronic conductivity, which in turn depends on the microscale phase separation and morphology of the polymer. Thus, modulation of the microstructure of PEDOT:PSS film enables us to tune the operation and device characteristics of the resulting OECT.
View Article and Find Full Text PDFObjectives: Obstructive sleep apnoea (OSA) is a common indication for adenoidectomy and tonsillectomy in children. Traditional practice involves overnight admission to monitor for respiratory complications. However, there is a shift towards same-day discharge in selected patients.
View Article and Find Full Text PDFA stretchable and self-healable conductive material with high conductivity is critical to high-performance wearable electronics and integrated devices for applications where large mechanical deformation is involved. While there has been great progress in developing stretchable and self-healable conducting materials, it remains challenging to concurrently maintain and recover such functionalities before and after healing. Here, a highly stretchable and autonomic self-healable conducting film consisting of a conducting polymer (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS) and a soft-polymer (poly(2-acrylamido-2-methyl-1-propanesulfonic acid), PAAMPSA) is reported.
View Article and Find Full Text PDFConjugated polymers are promising materials for thermoelectrics as they offer good performances at near ambient temperatures. The current focus on polymer thermoelectric research mainly targets a higher power factor (PF; a product of the conductivity and square of the Seebeck coefficient) through improving the charge mobility. This is usually accomplished structural modification in conjugated polymers using different processing techniques and doping.
View Article and Find Full Text PDFThe past few decades have seen an uptick in the scope and range of device applications of organic semiconductors, such as organic field-effect transistors, organic photovoltaics and light-emitting diodes. Several researchers have studied electrical transport in these materials and proposed physical models to describe charge transport with different material parameters, with most disordered semiconductors exhibiting hopping transport. However, there exists a lack of a consensus among the different models to describe hopping transport accurately and uniformly.
View Article and Find Full Text PDFNanocelluloses are promising bio-nano-materials for use as water treatment materials in environmental protection and remediation. Over the past decades, they have been integrated via novel nanoengineering approaches for water treatment processes. This review aims at giving an overview of nanocellulose requirements concerning emerging nanotechnologies of waster treatments and purification, i.
View Article and Find Full Text PDFConductive filaments (CFs) play a critical role in the mechanism of resistive random-access memory (ReRAM) devices. However, in situ detection and visualization of the precise location of CFs are still key challenges. We demonstrate for the first time the use of a π-conjugated molecule which can transform between its twisted and planar states upon localized Joule heating generated within filament regions, thus reflecting the locations of the underlying CFs.
View Article and Find Full Text PDFOrganic electrochemical transistors (OECTs) are presently a focus of intense research and hold great potential in expanding the horizons of the bioelectronics industry. The notable characteristics of OECTs, including their electrolyte-gating, which offers intimate interfacing with biological environments, and aqueous stability, make them particularly suitable to be operated within a living organism (in vivo). Unlike the existing in vivo bioelectronic devices, mostly based on rigid metal electrodes, OECTs form a soft mechanical contact with the biological milieu and ensure a high signal-to-noise ratio because of their powerful amplification capability.
View Article and Find Full Text PDFSelective occlusion of tumor vasculature has proven to be an effective strategy for cancer therapy. Among vascular coagulation agents, the extracellular domain of coagulation-inducing protein tissue factor, truncated tissue factor (tTF), is the most widely used. Since the truncated protein exhibits no coagulation activity and is rapidly cleared in the circulation, free tTF cannot be used for cancer treatment on its own but must be combined with other moieties.
View Article and Find Full Text PDFMitochondria have an independent genome (mtDNA) and protein synthesis machinery that coordinately activate for mitochondrial generation. Here, we report that the Krebs cycle intermediate fumarate links metabolism to mitobiogenesis through binding to malic enzyme 2 (ME2). Mechanistically, fumarate binds ME2 with two complementary consequences.
View Article and Find Full Text PDFThe addition of amphiphilic triethylene glycol based corannulene molecules provides multiple Lewis basic sites that assist in perovskite grain growth, and improve the charge carrier collection and moisture resistance of perovskite solar cells. This study paves the way for utilization of more molecules from corannulene families in perovskite research.
View Article and Find Full Text PDF