Background: Investigating the underlying molecular mechanisms responsible for endometrial dysfunction in women with PCOS is essential, particularly focusing on the role of hyperinsulinemia.
Methods: We explored the role of insulin in the decidualization process using a synthetic decidualization assay. To dissect the effects of PI3K/AKT-NR4A signaling, we employed small interfering RNAs (siRNAs) targeting the NR4A genes and inhibitors of the PI3K/AKT pathway.
Endogenous signals, namely nitric oxide (NO) and electrons, play a crucial role in regulating cell fate as well as the vascular and neuronal systems. Unfortunately, utilizing NO and electrical stimulation in clinical settings can be challenging due to NO's short half-life and the invasive electrodes required for electrical stimulation. Additionally, there is a lack of tools to spatiotemporally control gas release and electrical stimulation.
View Article and Find Full Text PDFAdvanced exfoliation techniques are crucial for exploring the intrinsic properties and applications of 2D materials. Though the recently discovered Au-enhanced exfoliation technique provides an effective strategy for the preparation of large-scale 2D crystals, the high cost of gold hinders this method from being widely adopted in industrial applications. In addition, direct Au contact could significantly quench photoluminescence (PL) emission in 2D semiconductors.
View Article and Find Full Text PDFEndometrial decidualization refers to a series of morphological changes and functional remodeling of the uterine endometrium to accept the embryo under the effect of estrogen and progesterone secreted by ovaries after ovulation. During decidualization, endometrial stromal cells (ESCs) proliferate and differentiate into decidual stromal cells, undergoing cytoskeletal rearrangement-mediated morphological changes and expressing decidualization markers, such as insulin-like growth factor-binding protein-1 and prolactin. Ras homology (Rho) proteins, a family of small G proteins, are well known as regulators of cellular morphology and involved in multiple other cellular processes.
View Article and Find Full Text PDFOleanolic acid (OA) and its semi-synthetic derivatives have been reported to have a wide range of biological activities. The introduction of electrophilic Michael acceptor group can increase the reactivity of OA to cellular targets and thus improve the anti-tumor activity. In this work, a series of novel α,β-unsaturated carbonyl derivatives of OA were designed and synthesized.
View Article and Find Full Text PDFObjective: To assess the activities of biapenem against multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis.
Methods: Biapenem/clavulanate (BP/CL) was evaluated for in vitro activity against Mycobacterium tuberculosis (Mtb) multidrug-resistant (MDR) isolates, extensively drug-resistant (XDR) isolates, and the H37RV strain. BP/CL activity against the H37Rv strain was assessed in liquid cultures, in macrophages, and in mice.
Vertebrate lens β/γ-crystallins share a conserved tertiary structure consisting of four Greek-key motifs divided into two globular domains. Numerous inherited mutations in β/γ-crystallins have been linked to cataractogenesis. In this research, the folding mechanism underlying cataracts caused by the I21N mutation in βB2 was investigated by comparing the effect of mutagenesis on the structural features and stability of four β/γ-crystallins, βB1, βB2, γC, and γD.
View Article and Find Full Text PDFIn this paper, the mechanism of orobanone analogues formation via aromatization rearrangement of curcumol was minutely explored. Aromatization of curcumol with acetone under acidic condition was selected as the model reaction. The formation of a stable aromatic system was the driving force for this reaction.
View Article and Find Full Text PDFCancer Chemother Pharmacol
January 2019
Objective: To investigate the potential inhibitory effects of structurally novel steroidal dimer by001 in esophageal cancer in vitro.
Methods: The cytotoxicity of by001 on esophageal, gastric, neuroblastoma and prostate cancer cells was examined MTT assay and colony formation assay. By001 induced apoptosis and production of intracellular reactive oxygen species on esophageal cancer cells Ec109, TE-1 and human normal gastric epithelial cells GES-1 was detected by flow cytometry.
β/γ-Crystallins are predominant structural proteins in vertebrate lens with unique properties of extremely high solubility, long-term stability and resistance to UV damage. Four conserved Trp residues in β/γ-crystallins account for UV absorbance and thereafter fluorescence quenching to avoid photodamage. Herein we found that βB2-crystallin Trp fluorescence was greatly enhanced by the introduction of an extra unquenched Trp fluorophore by cataract-associated mutations S31W and R145W.
View Article and Find Full Text PDFRestorations of 98 implant-supported single crowns in anterior maxillary area were divided into 5 groups: zirconia abutment, titanium abutment, and gold/gold hue abutment with zirconia coping, respectively, and titanium abutment with metal coping as well as gold/gold hue abutment with metal coping. A reflectance spectrophotometer was used to evaluate the color difference between the implant crowns and contralateral/neighboring teeth, as well as the color difference between the peri-implant soft tissue and the natural marginal mucosa. The mucosal discoloration score was used for subjective evaluation of the esthetic outcome of soft tissue around implant-supported single crowns in the anterior zone, and the crown color match score was used for subjective evaluation of the esthetic outcome of implant-supported restoration.
View Article and Find Full Text PDFInt J Biol Macromol
March 2018
Cataract, a crystallin protein aggregation disease, is the leading cause of human blindness worldwide. Congenital cataract may be induced by many factors and genetic disorders accounts for about half of the cases. Inherited mutations can promote cataract formation by affecting crystallin structure, solubility, stability, protein interactions and aggregatory propensity.
View Article and Find Full Text PDFβ/γ-Crystallins, the predominant structural proteins in vertebrate lens with lifelong stability to maintain lens transparency, share a high similarity in their primary sequences and tertiary structures. Four conserved Trp residues have been shown to be important to γ-crystallin structure, stability and protection against UV irradiation, whereas their roles in β-crystallins remain elusive. Herein we found that two congenital cataract-causing mutations, W59C and W151C, dramatically decreased βB2-crystallin solubility and stability against thermal and guanidine hydrochloride-induced denaturation.
View Article and Find Full Text PDFA series of flavone-7-phosphoramidate derivatives were synthesized and tested for their antiproliferative activity in vitro against human hepatoma cell line HepG2 and human normal hepatic cell line L-O2. Compound 8d, 16d and 17d, incorporating the amino acid alanine, exhibited high inhibitory activity on HepG2 cell line with IC50 values of 9.0 μmol/L, 5.
View Article and Find Full Text PDFThe tumor-suppressor protein p53 is considered to be one of the most important transport hubs of cell signal transduction, playing critical roles in the control of cell cycle arrest, apoptosis and many other processes as a nuclear transcription factor. p53 also acts in the cytoplasm to trigger apoptosis. Paclitaxel and other microtubule inhibitors can inhibit the growth of different types of cancer cells and induce apoptosis which is believed to be p53-independent.
View Article and Find Full Text PDFCataract is a lens opacification disease prevalent worldwide. Cataract-causing mutations in crystallins generally lead to the formation of light-scattering particles in the lens. However, it remains unclear for the detailed structural and pathological mechanisms of most mutations.
View Article and Find Full Text PDFDisease-causing mutations can be stabilizing or destabilizing. Missense mutations of structural residues are generally destabilizing, while stabilizing mutations are usually linked to alterations in protein functions. Stabilizing mutations are rarely identified in mutations linked to congenital cataract, a disease caused by the opacification of the lens.
View Article and Find Full Text PDFBiochim Biophys Acta
January 2014
Congenital cataract is the leading cause of childhood blindness worldwide. Investigations of the effects of inherited mutations on protein structure and function not only help us to understand the molecular mechanisms underlying congenital hereditary cataract, but also facilitate the study of complicated cataract and non-lens abnormities caused by lens-specific genes. In this research, we studied the effects of the V187M, V187E and R188H mutations on βB2-crystallin structure and stability using a combination of biophysical, cellular and molecular dynamic simulation analysis.
View Article and Find Full Text PDFZhongguo Zhong Xi Yi Jie He Za Zhi
April 2013
Guang Pu Xue Yu Guang Pu Fen Xi
January 2013
A dynamic prediction model for the content of Baicalin in Shang Jie plasters extract solutions was developed using near-infrared spectroscopy in transmission mode. Sixty five spectra were obtained through near-infrared transmission mode during extracting process. Refering to the content of Baicalin performed by reversed-phase high performance liquid chromatography (HPLC), the calibration model was developed with the application of partial least squares regression algorithm (PLSR).
View Article and Find Full Text PDFZhonghua Jie He He Hu Xi Za Zhi
December 2012
Objective: To investigate the effect of adjunctive therapy by immune agents in mice infected with multidrug-resistant tuberculosis (MDR-TB).
Methods: Sixty-eight adult male BALB/c mice were infected with multidrug-resistant Mycobacterium tuberculosis (MTB) by aerosol route. The mice were randomly divided into a control group, an immuno-treatment group, a drug treatment group and a combination treatment group (drug plus immuno-treatment).
Mining the disease information contained in the low-molecular-weight range of a proteomic profile is becoming of increasing interest in cancer research. This work evaluates the ability of nanoporous silicon microparticles (NPSMPs) to capture, enrich, protect, and detect low-molecular-weight peptides (LMWPs) sieved from a pool of highly abundant plasma proteins. The average pore size and porosity of NPSMPs are controlled by the electrochemical preparation conditions, and the critical parameters for admission or exclusion of protein with a definite molecular weight are determined by reflectometric-interference Fourier transform spectroscopy (RIFTS).
View Article and Find Full Text PDF