Publications by authors named "Wei Cheng Yan"

Modern microelectronics industries urgently require dielectric materials with low thermal expansion coefficients, low dielectric constants, and minimal dielectric loss. However, the design principles of materials with low dielectric constants and low thermal expansion are contradictory. In this study, a new diamine monomer containing a dibenzocyclooctadiene unit (DBCOD-NH) was designed and synthesized, which was subsequently polymerized with high fluorine content 4,4'-hexafluoroisopr-opylidene diphthalic anhydride and 4,4'-diamino-2,2'-bis(trifleoromethyl)biphenyl to obtain a series of fluorinated polyimides (PIs).

View Article and Find Full Text PDF

The coupled green energy and chemical production by photocatalysis represents a promising sustainable pathway, which poses great challenges for the multifunction integration of catalytic systems. Here we show a promising green photocatalyst design using Cu-ZnInS nanosheets and carbon dots as building units, which enables the integration of reaction, mass transfer, and separation functions in the nano-space, mimicking a nanoreactor. This function integration results in great activity promotion for benzyl alcohol oxidation coupled H production, with H/benzaldehyde production rates of 45.

View Article and Find Full Text PDF

Bioprinted skin tissue has the potential for aiding drug screening, formulation development, clinical transplantation, chemical and cosmetic testing, as well as basic research. Limitations of conventional skin tissue engineering approaches have driven the development of biomimetic skin equivalent via 3D bioprinting. A key hope for bioprinting skin is the improved tissue authenticity over conventional skin equivalent construction, enabling the precise localization of multiple cell types and appendages within a construct.

View Article and Find Full Text PDF

3D bioprinting is a pioneering technology that enables fabrication of biomimetic, multiscale, multi-cellular tissues with highly complex tissue microenvironment, intricate cytoarchitecture, structure-function hierarchy, and tissue-specific compositional and mechanical heterogeneity. Given the huge demand for organ transplantation, coupled with limited organ donors, bioprinting is a potential technology that could solve this crisis of organ shortage by fabrication of fully-functional whole organs. Though organ bioprinting is a far-fetched goal, there has been a considerable and commendable progress in the field of bioprinting that could be used as transplantable tissues in regenerative medicine.

View Article and Find Full Text PDF

Our previous work demonstrated the uniform particle pattern formation on the substrates using electrical field guided electrospray deposition. In this work, we reported for the first time the fabrication of gradient particle patterns on glass slides using an additional point, line, or bar electrode based on our previous electrospray deposition configuration. We also demonstrated that the polydimethylsiloxane (PDMS) coating could result in the formation of uniform particle patterns instead of gradient particle patterns on glass slides using the same experimental setup.

View Article and Find Full Text PDF

A single-step fabrication method, coaxial electrohydrodynamic atomization (CEHDA), was developed to synthesize drug-loaded microbubbles (MBs) for combination treatment of ischemic stroke. The bioactivity of therapeutic agent (tPA, tissue plasminogen activator) after preparation was evaluated, showing that CEHDA could be very promising method for producing MBs with therapeutic functions. The bubble performance and tPA release profiles were also examined by exposing the bubbles to 2MHz ultrasound of various intensities.

View Article and Find Full Text PDF

First-line cancer chemotherapy has been prescribed for patients suffered from cancers for many years. However, conventional chemotherapy provides a high parenteral dosage of anticancer drugs over a short period, which may cause serious toxicities and detrimental side effects in healthy tissues. This study aims to develop a new drug delivery system (DDS) composed of double-walled microparticles and an injectable hydrogel for localized dual-agent drug delivery to tumors.

View Article and Find Full Text PDF

As cancer takes its toll on human health and well-being, standard treatment techniques such as chemotherapy and radiotherapy often fall short of ideal solutions. In particular, adverse side effects due to excess dosage and collateral damage to healthy cells as well as poor patient compliance due to multiple administrations continue to pose challenges in cancer treatment. Thus, the development of appropriately engineered drug delivery systems (DDS) for effective, controlled and sustained delivery of drugs is of interest for patient treatment.

View Article and Find Full Text PDF