Background: Thermostability is a fundamental property of proteins to maintain their biological functions. Predicting protein stability changes upon mutation is important for our understanding protein structure-function relationship, and is also of great interest in protein engineering and pharmaceutical design.
Results: Here we present mutDDG-SSM, a deep learning-based framework that uses the geometric representations encoded in protein structure to predict the mutation-induced protein stability changes.
The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has raised concerns worldwide due to its enhanced transmissibility and immune escapability. The first dominant Omicron BA.1 subvariant harbors more than 30 mutations in the spike protein from the prototype virus, of which 15 mutations are located at the receptor binding domain (RBD).
View Article and Find Full Text PDFPoliovirus (PV) is an infectious virus that causes poliomyelitis, which seriously threatens the health of children. The release of viral RNA is a key step of PV in host cell infection, and multiple lines of evidence have demonstrated that RNA release is initiated by the opening of the twofold channels of the PV capsid. However, the mechanism that controls the twofold channel opening is still not well understood.
View Article and Find Full Text PDFThe pandemic of the COVID-19 disease caused by SARS-CoV-2 has led to more than 200 million infections and over 4 million deaths worldwide. The progress in the developments of effective vaccines and neutralizing antibody therapeutics brings hopes to eliminate the threat of COVID-19. However, SARS-CoV-2 continues to mutate, and several new variants have been emerged.
View Article and Find Full Text PDFNorovirus (NoV) is the major pathogen causing the outbreaks of the viral gastroenteritis across the world. Among the various genotypes of NoV, GII.4 is the most predominant over the past decades.
View Article and Find Full Text PDFAs revealed by previous experiments, protein mechanical stability can be effectively regulated by ligand binding with the binding site distant from the force-bearing region. However, the mechanism for such long-range allosteric control of protein mechanics is still largely unknown. In this work, we use protein topology-based elastic network model (ENM) and all-atomic steered molecular dynamics (SMD) simulations to study the impact of ligand binding on protein mechanical stability in two systems, i.
View Article and Find Full Text PDFIntra-molecular energy transport between distant functional sites plays important roles in allosterically regulating the biochemical activity of proteins. How to identify the specific intra-molecular signaling pathway from protein tertiary structure remains a challenging problem. In the present work, a non-equilibrium dynamics method based on the elastic network model (ENM) was proposed to simulate the energy propagation process and identify the specific signaling pathways within proteins.
View Article and Find Full Text PDF