Publications by authors named "Wehrli P"

We present a novel, correlative chemical imaging strategy based on multimodal matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), hyperspectral microscopy, and spatial chemometrics. Our workflow overcomes challenges associated with correlative MSI data acquisition and alignment by implementing 1 + 1-evolutionary image registration for precise geometric alignment of multimodal imaging data and their integration in a common, truly multimodal imaging data matrix with maintained MSI resolution (10 μm). This enabled multivariate statistical modeling of multimodal imaging data using a novel multiblock orthogonal component analysis approach to identify covariations of biochemical signatures between and within imaging modalities at MSI pixel resolution.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how lipids in the brain's microenvironment affect the development and characteristics of amyloid β (Aβ) plaques associated with Alzheimer's disease, using advanced imaging techniques to analyze these interactions.
  • - Researchers employed specialized tools like MALDI TIMS TOF MSI and hyperspectral microscopy to identify different types of lipids and their localized patterns near Aβ plaques in genetically modified mice.
  • - Findings reveal distinct lipid compositions that vary around different forms of Aβ plaques, with certain lipids enriched or depleted at specific plaque stages, indicating how lipid changes correlate with plaque growth and progression in Alzheimer's pathology.
View Article and Find Full Text PDF

One of the major hallmarks of Alzheimer's disease (AD) pathology is the formation of extracellular amyloid β (Aβ) plaques. While Aβ has been suggested to be critical in inducing and, potentially, driving the disease, the molecular basis of AD pathogenesis is still under debate. Extracellular Aβ plaque pathology manifests itself upon aggregation of distinct Aβ peptides, resulting in morphologically different plaque morphotypes, including mainly diffuse and cored senile plaques.

View Article and Find Full Text PDF

Imaging mass spectrometry (IMS) is a promising new chemical imaging modality that generates a large body of complex imaging data, which in turn can be approached using multivariate analysis approaches for image analysis and segmentation. Processing IMS raw data is critically important for proper data interpretation and has significant effects on the outcome of data analysis, in particular statistical modeling. Commonly, data processing methods are chosen based on rational motivations rather than comparative metrics, though no quantitative measures to assess and compare processing options have been suggested.

View Article and Find Full Text PDF
Article Synopsis
  • * A specific compound, N-(5-((4-nitrobenzyl)thio)-1,3,4-thiadiazol-2-yl)nicotinamide, emerged as a strong inhibitor with an inhibitory concentration of 3.8 µM after modifications.
  • * The research indicates that these inhibitors may work through a unique mechanism by covalently binding to the active site cysteine of SrtA, while not harming bacterial growth in vitro.
View Article and Find Full Text PDF

Amyloid-β (Aβ) pathology in Alzheimer's disease (AD) is characterized by the formation of polymorphic deposits comprising diffuse and cored plaques. Because diffuse plaques are predominantly observed in cognitively unaffected, amyloid-positive (CU-AP) individuals, pathogenic conversion into cored plaques appears to be critical to AD pathogenesis. Herein, we identified the distinct Aβ species associated with amyloid polymorphism in brain tissue from individuals with sporadic AD (s-AD) and CU-AP.

View Article and Find Full Text PDF

While the molecular mechanisms underlying Alzheimer's disease (AD) remain largely unknown, abnormal accumulation and deposition of beta amyloid (Aβ) peptides into plaques has been proposed as a critical pathological process driving disease progression. Over the last years, neuronal lipid species have been implicated in biological mechanisms underlying amyloid plaque pathology. While these processes comprise genetic features along with lipid signaling as well as direct chemical interaction of lipid species with Aβ mono- and oligomers, more efforts are needed to spatially delineate the exact lipid-Aβ plaque interactions in the brain.

View Article and Find Full Text PDF

Recent advances in the understanding of basic pathological mechanisms in various neurological diseases depend directly on the development of novel bioanalytical technologies that allow sensitive and specific chemical imaging at high resolution in cells and tissues. Mass spectrometry-based molecular imaging (IMS) has gained increasing popularity in biomedical research for mapping the spatial distribution of molecular species in situ. The technology allows for comprehensive, untargeted delineation of in situ distribution profiles of metabolites, lipids, peptides and proteins.

View Article and Find Full Text PDF

Escherichia coli is able to rapidly adjust the biophysical properties of its membrane phospholipids to adapt to environmental challenges including starvation stress. These membrane lipid modifications were investigated in glucose starved E. coli cultures and compared to a ΔrelAΔspoT (ppGpp(0)) mutant strain of E.

View Article and Find Full Text PDF

The renal collecting system (CS) is composed of segment-specific (SS) and intercalated (IC) cells. The latter comprise at least two subtypes (type A and non-type A IC). The origin and maintenance of cellular heterogeneity in the CS is unclear.

View Article and Find Full Text PDF

Effective treatment of malignant carcinomas requires identification of proteins regulating epithelial cell proliferation. To this end, we compared gene expression profiles in murine colonocytes and their c-Myc-transformed counterparts, which possess enhanced proliferative potential. A surprisingly short list of deregulated genes included the cDNA for clusterin, an extracellular glycoprotein without a firmly established function.

View Article and Find Full Text PDF

Membrane-bound Fas ligand (FasL, Apo-1L, CD95L) induces rapid apoptosis of Fas (CD95)-sensitive cells on interaction with Fas, and is an important effector molecule of cytolytic T lymphocytes (CTLs). Melanomas are immunogenic and induce the production of specific CTLs, but are usually able to escape immune destruction. We investigated Fas expression and function in 53 cutaneous melanocytic lesions and 13 melanoma cell lines grown in vitro.

View Article and Find Full Text PDF

Death receptors are a growing family of transmembrane proteins that can detect the presence of specific extracellular death signals and rapidly trigger cellular destruction by apoptosis. Expression and signaling by death receptors and their respective ligands is a tightly regulated process essential for key physiologic functions in a variety of organs, including the skin. Several death receptors and ligands, Fas and Fas ligand being the most important to date, are expressed in the skin and have proven to be essential in contributing to its functional integrity.

View Article and Find Full Text PDF

Clusterin is a widely expressed, well conserved, secreted glycoprotein, which is highly induced in tissues regressing as a consequence of apoptotic cell death in vivo. It has recently been shown that clusterin expression is only confined to surviving cells following the induction of apoptosis in vitro, suggesting that it is involved in cell survival rather than death. In the hypothesis that clusterin may be implicated in cellular responses to stress, clusterin gene expression was analyzed in the A431 human epidermoid cancer cell line following heat shock and oxidative stress.

View Article and Find Full Text PDF

Toxic epidermal necrolysis (TEN, Lyell's syndrome) is a severe adverse drug reaction in which keratinocytes die and large sections of epidermis separate from the dermis. Keratinocytes normally express the death receptor Fas (CD95); those from TEN patients were found to express lytically active Fas ligand (FasL). Antibodies present in pooled human intravenous immunoglobulins (IVIG) blocked Fas-mediated keratinocyte death in vitro.

View Article and Find Full Text PDF