Light manipulation at the nanoscale is essential both for fundamental science and modern technology. The quest to shorter lengthscales, however, requires the use of light wavelengths beyond the visible. In particular, in the extreme ultraviolet regime these manipulation capabilities are hampered by the lack of efficient optics, especially for polarization control.
View Article and Find Full Text PDFThe discovery of high-temperature superconductivity in La_{3}Ni_{2}O_{7} at pressures above 14 GPa has spurred extensive research efforts. Yet, fundamental aspects of the superconducting phase, including the possibility of a filamentary character, are currently subjects of controversial debates. Conversely, a crystal structure with NiO_{6} octahedral bilayers stacked along the c-axis direction was consistently posited in initial studies on La_{3}Ni_{2}O_{7}.
View Article and Find Full Text PDFChem Commun (Camb)
September 2024
The anhydrous alkaline earth metal carbonate Be(CO) was synthesized in a laser-heated diamond anvil cell at moderate pressures and temperatures (20(2) GPa and 1500(200) K) by a reaction of BeO with CO. It crystallizes in the acentric, trigonal space group 321 with = 3. The crystal structure was obtained from synchrotron single crystal X-ray diffraction data and confirmed by density functional theory-based calculations in combination with Raman spectroscopy.
View Article and Find Full Text PDFThe study of phonon dynamics and its interplay with magnetic ordering is crucial for understanding the unique quantum phases in the pyrochlore iridates. Here, through inelastic x-ray scattering on a single crystal sample of the pyrochlore iridate EuIrO, we map out the phonon excitation spectra in EuIrOand compare them with the theoretical phonon spectra calculated using the density functional theory. Possible phonon renormalization across the magnetic long-range order transition is observed in our experiments, which is consistent with the results of the previous Raman scattering experiments.
View Article and Find Full Text PDFThe emergence of collective order in matter is among the most fundamental and intriguing phenomena in physics. In recent years, the dynamical control and creation of novel ordered states of matter not accessible in thermodynamic equilibrium is receiving much attention. The theoretical concept of dynamical multiferroicity has been introduced to describe the emergence of magnetization due to time-dependent electric polarization in non-ferromagnetic materials.
View Article and Find Full Text PDFPhotoacoustics
February 2023
Collective lattice dynamics determine essential aspects of condensed matter, such as elastic and thermal properties. These exhibit strong dependence on the length-scale, reflecting the marked wavevector dependence of lattice excitations. The extreme ultraviolet transient grating (EUV TG) approach has demonstrated the potential of accessing a wavevector range corresponding to the 10s of nm length-scale, representing a spatial scale of the highest relevance for fundamental physics and forefront technology, previously inaccessible by optical TG and other inelastic scattering methods.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
June 2022
Using X-ray scattering, we measured detailed maps of the diffuse scattering intensity distribution and a number of phonon dispersion branches for a single crystal of inorganically formed natural calcite and for high-quality mesocrystals of biogenic calcite from a Mediterranean sea urchin spine. A comparison shows that the known differences in the mechanical properties between the `strong' biogenic and `brittle' abiotic material should be attributed to the mesoscopic architecture of the crystal rather than to a modification of the calcite crystal structure. The data are rationalized by comparing them to the results of ab initio model calculations of lattice dynamics.
View Article and Find Full Text PDFUltrafast control of magnetization on the nanometer length scale, in particular all-optical switching, is key to putting ultrafast magnetism on the path toward future technological application in data storage technology. However, magnetization manipulation with light on this length scale is challenging due to the wavelength limitations of optical radiation. Here, we excite transient magnetic gratings in a GdFe alloy with a periodicity of 87 nm by the interference of two coherent femtosecond light pulses in the extreme ultraviolet spectral range.
View Article and Find Full Text PDFWe report an extraordinary pressure dependence of the magnetic interactions in the metal-organic system [CuF_{2}(H_{2}O)_{2}]_{2}pyrazine. At zero pressure, this material realizes a quasi-two-dimensional spin-1/2 square-lattice Heisenberg antiferromagnet. By high-pressure, high-field susceptibility measurements we show that the dominant exchange parameter is reduced continuously by a factor of 2 on compression.
View Article and Find Full Text PDFTwo Cu coordination polymers [CuCl(pyz)](BF) 1 and [CuBr(pyz)](BF) 2 (pyz = pyrazine) were synthesized in the family of quasi two-dimensional (2D) [Cu(pyz)] magnetic networks. The layer connectivity by monatomic halide ligands results in significantly shorter interlayer distances. Structures were determined by single-crystal X-ray diffraction.
View Article and Find Full Text PDFWe present a method for the precise determination of the full elasticity tensor from a single crystal diffraction experiment using monochromatic x rays. For the two benchmark systems calcite and magnesium oxide, we show that the measurement of thermal diffuse scattering in the proximity of Bragg reflections provides accurate values of the complete set of elastic constants. This approach allows for a reliable and model-free determination of the elastic properties and can be performed together with crystal structure investigation in the same experiment.
View Article and Find Full Text PDFAntiferroelectric lead zirconate is the key ingredient in modern ferroelectric and piezoelectric functional solid solutions. By itself it offers opportunities in new-type non-volatile memory and energy storage applications. A highly useful and scientifically puzzling feature of this material is the competition between the ferro- and antiferroelectric phases due to their energetic proximity, which leads to a challenge in understanding of the critical phenomena driving the formation of the antiferroelectric structure.
View Article and Find Full Text PDFInelastic X-ray scattering with meV energy resolution (IXS) is an ideal tool to measure collective excitations in solids and liquids. In non-resonant scattering condition, the cross-section is strongly dominated by lattice vibrations (phonons). However, it is possible to probe additional degrees of freedom such as magnetic fluctuations that are strongly coupled to the phonons.
View Article and Find Full Text PDFJ Phys Condens Matter
August 2015
The lattice dynamics of the silica polymorph [Formula: see text]-cristobalite has been investigated by a combination of diffuse and inelastic x-ray scattering and ab initio lattice dynamics calculations. Phonon dispersion relations and vibrational density of states are reported and the phonon eigenvectors analyzed by a detailed comparison of scattering intensities. The experimentally validated calculation is used to identify the vibration contributing most to the first peak in the density of vibrational states.
View Article and Find Full Text PDFSingle crystals of ice Ih, extracted from the subglacial Lake Vostok accretion ice layer (3621 m depth) were investigated by means of diffuse x-ray scattering and inelastic x-ray scattering. The diffuse scattering was identified as mainly inelastic and rationalized in the frame of ab initio calculations for the ordered ice XI approximant. Together with Monte-Carlo modelling, our data allowed reconsidering previously available neutron diffuse scattering data of heavy ice as the sum of thermal diffuse scattering and static disorder contribution.
View Article and Find Full Text PDFThe lattice dynamics of the metallic tin β and γ polymorphs has been studied by a combination of diffuse scattering, inelastic x-ray scattering and density functional perturbation theory. The non-symmorphic space group of the β-tin structure results in unusual asymmetry of thermal diffuse scattering. Strong resemblance of the diffuse scattering intensity distribution in β and γ-tin were observed, reflecting the structural relationship between the two phases and revealing the qualitative similarity of the underlying electronic potential.
View Article and Find Full Text PDFWe measured the density of vibrational states (DOS) and the specific heat of various glassy and crystalline polymorphs of SiO2. The typical (ambient) glass shows a well-known excess of specific heat relative to the typical crystal (α-quartz). This, however, holds when comparing a lower-density glass to a higher-density crystal.
View Article and Find Full Text PDFThe lattice dynamics of coesite has been studied by a combination of diffuse x-ray scattering, inelastic x-ray scattering and ab initio lattice dynamics calculations. The combined technique gives access to the full lattice dynamics in the harmonic description and thus eventually provides detailed information on the elastic properties, the stability and metastability of crystalline systems. The experimentally validated calculation was used for the investigation of the eigenvectors, mode character and their contribution to the density of vibrational states.
View Article and Find Full Text PDFThe vibrational dynamics of a permanently densified silica glass is compared to the one of an α-quartz polycrystal, the silica polymorph of the same density and local structure. The combined use of inelastic x-ray scattering experiments and ab initio numerical calculations provides compelling evidence of a transition, in the glass, from the isotropic elastic response at long wavelengths to a microscopic regime as the wavelength decreases below a characteristic length ξ of a few nanometers, corresponding to about 20 interatomic distances. In the microscopic regime the glass vibrations closely resemble those of the polycrystal, with excitations related to the acoustic and optic modes of the crystal.
View Article and Find Full Text PDFWe have performed bulk and surface-sensitive inelastic x-ray scattering experiments on liquid indium with 3 meV energy resolution. The experimental data are well reproduced within a generalized hydrodynamic model including structural and microscopic relaxation processes. We find a longitudinal viscosity of 22 mPa s in the near-surface region compared to 7.
View Article and Find Full Text PDF