Photoreceptor loss results in vision loss in many blinding diseases, and metabolic dysfunction underlies photoreceptor degeneration. So, exploiting photoreceptor metabolism is an attractive strategy to prevent vision loss. Yet, the metabolic pathways that maintain photoreceptor health remain largely unknown.
View Article and Find Full Text PDFHK2 and PKM2 are two main regulators of aerobic glycolysis. Photoreceptors (PRs) use aerobic glycolysis to produce the biomass necessary for the daily renewal of their outer segments. Previous work has shown that HK2 and PKM2 are important for the normal function and long-term survival of PRs but are dispensable for PR maturation, and their individual loss has opposing effects on PR survival during acute nutrient deprivation.
View Article and Find Full Text PDFRetinal cell death is the major cause of vision loss in many forms of blinding retinal disease. A plethora of research is focused on understanding the mechanisms of retinal cell death to identify potential neuroprotective strategies that prevent vision loss in these diseases. Traditionally, histological techniques have been used to determine the type and extent of cell death in the retina.
View Article and Find Full Text PDFTreatment options are lacking to prevent photoreceptor death and subsequent vision loss. Previously, we demonstrated that reprogramming metabolism via the pharmacologic activation of PKM2 is a novel photoreceptor neuroprotective strategy. However, the features of the tool compound used in those studies, ML-265, preclude its advancement as an intraocular, clinical candidate.
View Article and Find Full Text PDFFront Ophthalmol (Lausanne)
December 2023
Photoreceptor cell death is the cause of vision loss in many forms of retinal disease. Metabolic dysfunction within the outer retina has been shown to be an underlying factor contributing to photoreceptor loss. Therefore, a comprehensive understanding of the metabolic pathways essential to photoreceptor health and function is key to identifying novel neuroprotective strategies.
View Article and Find Full Text PDFSynthetic high-density lipoprotein (sHDL) and rapamycin (Rap) have both been shown to be potential treatments for age-related macular degeneration (AMD). The low aqueous solubility of Rap, however, limits its therapeutic utility. Here we used an Apolipoprotein A-I mimetic peptide and phospholipid-based sHDL for the intravitreal delivery of Rap.
View Article and Find Full Text PDFInherited retinal diseases (IRDs) are a collection of rare genetic conditions, which can lead to complete blindness. A large number of causative genes have been identified for IRDs and while some success has been achieved with gene therapies, they are limited in scope to each individual gene and/or the specific mutation harbored by each patient with an IRD. Multiple studies are underway to elucidate common underlying mechanisms contributing to photoreceptor (PR) loss and to design gene-agnostic, pan-disease therapeutics.
View Article and Find Full Text PDFPhotoreceptor death is the ultimate cause of vision loss in many retinal degenerative conditions. Identifying novel therapeutic avenues for prolonging photoreceptor health and function has the potential to improve vision and quality of life for patients suffering from degenerative retinal disorders. Photoreceptors are metabolically unique among other neurons in that they process the majority of their glucose via aerobic glycolysis.
View Article and Find Full Text PDFPhotoreceptor cell death is the ultimate cause of vision loss in many retinal disorders, and there is an unmet need for neuroprotective modalities to improve photoreceptor survival. Similar to cancer cells, photoreceptors maintain pyruvate kinase muscle isoform 2 (PKM2) expression, which is a critical regulator in aerobic glycolysis. Unlike PKM1, which has constitutively high catalytic activity, PKM2 is under complex regulation.
View Article and Find Full Text PDFPeters Plus Syndrome (PPS) is a rare autosomal recessive disease characterized by ocular defects, short stature, brachydactyly, characteristic facial features, developmental delay and other highly variable systemic defects. Classic PPS is caused by loss-of-function mutations in the B3GLCT gene encoding for a β3-glucosyltransferase that catalyzes the attachment of glucose via a β1-3 glycosidic linkage to O-linked fucose on thrombospondin type 1 repeats (TSRs). B3GLCT was shown to participate in a non-canonical ER quality control mechanism; however, the exact molecular processes affected in PPS are not well understood.
View Article and Find Full Text PDFMutations in FOXC1 and PITX2 constitute the most common causes of ocular anterior segment dysgenesis (ASD), and confer a high risk for secondary glaucoma. The genetic causes underlying ASD in approximately half of patients remain unknown, despite many of them being screened by whole exome sequencing. Here, we performed whole genome sequencing on DNA from two affected individuals from a family with dominantly inherited ASD and glaucoma to identify a 748-kb deletion in a gene desert that contains conserved putative PITX2 regulatory elements.
View Article and Find Full Text PDFPurpose: The gene encodes an enzyme that is a member of the cytochrome P450 superfamily. Mutations in have been mainly reported in recessive pediatric ocular phenotypes, such as primary congenital glaucoma (PCG) and congenital glaucoma with anterior segment dysgenesis (CG with ASD), with some likely pathogenic variants also identified in families affected with adult-onset primary open angle glaucoma (POAG).
Methods: We examined in 158 pediatric patients affected with PCG (eight), CG with ASD (22), CG with other developmental ocular disorders (11), juvenile glaucoma with or without additional ocular anomalies (26), and ASD or other developmental ocular conditions without glaucoma (91); in addition, a large cohort of adult patients with POAG (193) and POAG-negative controls (288) was examined.
Background: Congenital cataracts affect 3-6 per 10,000 live births and represent one of the leading causes of blindness in children. Congenital cataracts have a strong genetic component with high heterogeneity and variability.
Case Presentation: Analysis of whole exome sequencing data in a patient affected with congenital cataracts identified a pathogenic deletion which was further defined by other techniques.
Am J Med Genet A
September 2016
Peters anomaly is a form of anterior segment dysgenesis characterized by central ocular opacity and corneo-lenticular adhesions. Isolated and syndromic Peters anomaly can be observed and demonstrate significant genetic heterogeneity. We report the identification of overlapping 8q21.
View Article and Find Full Text PDFThe genetic basis of congenital glaucoma with systemic anomalies is largely unknown. Whole exome sequencing (WES) in 10 probands with congenital glaucoma and variable systemic anomalies identified pathogenic or likely pathogenic variants in three probands; in two of these, a combination of two Mendelian disorders was found to completely explain the patients' features whereas in the third case only the ocular findings could be explained by the genetic diagnosis. The molecular diagnosis for glaucoma included two cases with compound heterozygous or homozygous pathogenic alleles in CYP1B1 and one family with a dominant pathogenic variant in FOXC1; the second genetic diagnosis for the additional systemic features included compound heterozygous mutations in NPHS1 in one family and a heterozygous 18q23 deletion in another pedigree.
View Article and Find Full Text PDFPeters anomaly is a rare form of anterior segment ocular dysgenesis, which can also be associated with additional systemic defects. At this time, the majority of cases of Peters anomaly lack a genetic diagnosis. We performed whole exome sequencing of 27 patients with syndromic or isolated Peters anomaly to search for pathogenic mutations in currently known ocular genes.
View Article and Find Full Text PDFPeters plus syndrome (PPS) is a rare autosomal-recessive disorder characterized by Peters anomaly of the eye, short stature, brachydactyly, dysmorphic facial features, developmental delay, and variable other systemic abnormalities. In this report, we describe screening of 64 patients affected with PPS, isolated Peters anomaly and PPS-like phenotypes. Mutations in the coding region of B3GALTL were identified in nine patients; six had a documented phenotype of classic PPS and the remaining three had a clinical diagnosis of PPS with incomplete clinical documentation.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2011
Purpose: To examine sex- and race-associated differences in macular thickness and foveal pit morphology by using spectral-domain optical coherence tomography (SD-OCT).
Methods: One hundred eighty eyes of 90 healthy patients (43 women, 47 men) underwent retinal imaging with spectral-domain OCT. The lateral scale of each macular volume scan was corrected for individual differences in axial length by ocular biometry.