Publications by authors named "Wegner S"

Light-responsive hydrogels are highly valued for their dynamic mechanical properties and biocompatibility. In this study, we present a hydrogel system that can either soften or strengthen on green light exposure, or remain unresponsive to light, depending on the addition of adenosyl cobalamin (AdoCbl) and Co. These protein-based hydrogels were formed using genetically encoded SpyTag-SpyCatcher chemistry and included green light-sensitive CarH protein domains.

View Article and Find Full Text PDF

The heparan sulfate (HS)-rich extracellular matrix (ECM) serves as an initial interaction site for the homotrimeric spike (S) protein of SARS-CoV-2 to facilitate subsequent docking to angiotensin-converting enzyme 2 (ACE2) receptors and cellular infection. More recent variants, notably Omicron, have evolved by swapping several amino acids to positively charged residues to enhance the interaction of the S-protein trimer with the negatively charged HS. However, these enhanced interactions may reduce Omicron's ability to move through the HS-rich ECM to effectively find ACE2 receptors and infect cells, raising the question of how to mechanistically explain HS-associated viral movement.

View Article and Find Full Text PDF

While H-H J-couplings are the cornerstone of all spectral assignment methods in solution-state NMR, they are yet to be observed in solids. Here we observe H-H J-couplings in plastic crystals of (1S)-(-)-camphor in solid-state NMR at magic angle spinning (MAS) rates of 100 kHz and above. This is enabled in this special case because the intrinsic coherence lifetimes at fast MAS rates become longer than the inverse of the H-H J couplings.

View Article and Find Full Text PDF

The precise spatial and temporal regulation of cell-cell adhesions is crucial for understanding the underlying biological processes and for assembling multicellular structures in tissue engineering. Traditional approaches have relied on chemical membrane functionalization and regulated gene expression of native cell adhesion molecules (CAMs), but these methods lack the necessary control and can be detrimental to cells. In contrast, engineered photoswitchable cell-cell adhesions offer a reversible and dynamic regulation at a single-cell resolution.

View Article and Find Full Text PDF

Pluripotent cells can yield different cell types determined by the specific sequence of differentiation signals that they encounter as the cell activates or deactivates functions and retains memory of previous inputs. Here, we achieved pluripotency in synthetic cells by incorporating three dormant apo-metalloenzymes such that they could differentiate towards distinct fates, depending on the sequence of specific metal ion transport with ionophores. In the first differentiation step, we selectively transported one of three extracellular metal ion cofactors into pluripotent giant unilamellar vesicles (GUVs), which resulted in elevation of intracellular pH, hydrogen peroxide production or GUV lysis.

View Article and Find Full Text PDF
Article Synopsis
  • - Lactate transport is vital for cancer cell survival, but current drugs targeting the MCT1 and MCT4 transporters have shown limited success in clinical applications, mostly due to issues with isoform expression in tumors and the lengthy time required for new inhibitors to reach human trials.
  • - Researchers conducted a drug screen using FDA-approved substances to find potential MCT inhibitors, identifying that several drug classes, including non-steroidal anti-inflammatory drugs (NSAIDs), can inhibit MCT1 with moderate effectiveness.
  • - Specifically, among continuing investigations on NSAIDs for their ability to inhibit MCT1, piroxicam emerged as a promising candidate with relevant dosages that could enhance anticancer therapy by potentially working alongside existing treatments.
View Article and Find Full Text PDF

Individual neurons of the hypothalamic suprachiasmatic nuclei (SCN) contain an intracellular molecular clock that drives these neurons to exhibit day-night variation in excitability. The neuropeptide vasoactive intestinal polypeptide (VIP) and its cognate receptor, VPAC, are synthesized by SCN neurons and this intercellular VIP-VPAC receptor signal facilitates coordination of SCN neuronal activity and timekeeping. How the loss of VPAC receptor signalling affects the electrophysiological properties and states of SCN neurons as well as their responses to excitatory inputs is unclear.

View Article and Find Full Text PDF

Isoprenoids are highly valued targets for microbial chemical production, allowing the creation of fragrances, biofuels, and pharmaceuticals from renewable carbon feedstocks. To increase isoprenoid production, previous efforts have manipulated pyruvate dehydrogenase (PDH) bypass pathway flux to increase cytosolic acetyl-coA; however, this results in mevalonate secretion and does not necessarily translate into higher isoprenoid production. Identification and disruption of the transporter mediating mevalonate secretion would allow us to determine whether increasing PDH bypass activity in the absence of secretion improves conversion of mevalonate into downstream isoprenoids.

View Article and Find Full Text PDF

Protein photolithography is an invaluable tool for generating protein microchips and regulating interactions between cells and materials. However, the absence of light-responsive molecules that allow for the copatterning of multiple functional proteins with biocompatible visible light poses a significant challenge. Here, a new approach for photopatterning three distinct proteins on a single surface by using green, red, and far-red light is reported.

View Article and Find Full Text PDF

Ultra-fast magic-angle spinning (100+kHz) has revolutionized solid-state NMR of biomolecular systems but has so far failed to gain ground for the analysis of paramagnetic organic and inorganic powders, despite the potential rewards from substantially improved spectral resolution. The principal blockages are that the smaller fast-spinning rotors present significant barriers for sample preparation, particularly for air/moisture-sensitive systems, and are associated with low sensitivity from the reduced sample volumes. Here, we demonstrate that the sensitivity penalty is less severe than expected for highly paramagnetic solids and is more than offset by the associated improved resolution.

View Article and Find Full Text PDF

The recent development of ultra-fast magic-angle spinning (MAS) (>100 kHz) provides new opportunities for structural characterization in solids. Here, we use NMR crystallography to validate the structure of verinurad, a microcrystalline active pharmaceutical ingredient. To do this, we take advantage of H resolution improvement at ultra-fast MAS and use solely H-detected experiments and machine learning methods to assign all the experimental proton and carbon chemical shifts.

View Article and Find Full Text PDF

Cholesterol is an important lipid playing a crucial role in mediating essential cellular processes as well as maintaining the basic structural integrity of biological membranes. Given its vast biological importance, there is an unabated need for sophisticated strategies to investigate cholesterol-mediated biological processes. Raman-tagged sterol analogs offer the advantage of being visualizable without the need for a bulky dye that potentially affects natural membrane integration and cellular interactions as it is the case for many conventionally used fluorescent analogs.

View Article and Find Full Text PDF
Article Synopsis
  • - Guselkumab, an interleukin-23p19 subunit inhibitor, has shown significant improvements in clinical outcomes and patient-reported results in patients with moderate-to-severe psoriasis, emphasizing the need for personalized treatment approaches based on these factors.
  • - A post hoc analysis of the VOYAGE 1 trial revealed that 22.2% of patients maintained complete skin clearance for over three years, with this group showing lower baseline rates of obesity and depression, and a higher rate of non-smokers compared to those who did not maintain clearance.
  • - Despite achieving full skin clearance, some patients still reported quality-of-life impacts, particularly in the areas of symptoms and feelings, indicating that clinical measures alone may not fully capture the
View Article and Find Full Text PDF

Importance: Psoriasis is a chronic inflammatory skin disease with unmet needs for tailored treatment and therapy de-escalation strategies.

Objective: To evaluate early intervention with and prolonging the dosing interval for guselkumab, a p19 subunit-targeted interleukin (IL)-23 inhibitor, in patients with moderate to severe psoriasis.

Design, Setting, And Participants: The GUIDE clinical trial is an ongoing phase 3b, randomized, double-blinded trial conducted across 80 centers in Germany and France comprising 3 parts evaluating the impact of early disease intervention, prolonged dosing interval, and maintenance of response following treatment withdrawal among adults with moderate to severe plaque psoriasis.

View Article and Find Full Text PDF

In recent years, cancer immunotherapy has undergone a transformative shift toward personalized and targeted therapeutic strategies. Bacteria-derived outer membrane vesicles (OMVs) have emerged as a promising and adaptable platform for cancer immunotherapy due to their unique properties, including natural immunogenicity and the ability to be engineered for specific therapeutic purposes. In this review, a comprehensive overview is provided of state-of-the-art techniques and methodologies employed in the engineering of versatile OMVs for cancer immunotherapy.

View Article and Find Full Text PDF

Low temperatures and cooling agents like menthol induce cold sensation by activating the peripheral cold receptors TRPM8 and TRPA1, cation channels belonging to the TRP channel family, while the reduction of potassium currents provides an additional and/or synergistic mechanism of cold sensation. Despite extensive studies over the past decades to identify the molecular receptors that mediate thermosensation, cold sensation is still not fully understood and many cold-sensitive peripheral neurons do not express the well-established cold sensor TRPM8. We found that the voltage-gated potassium channel KCNQ1 (Kv7.

View Article and Find Full Text PDF

The cell-cell adhesion molecule E-cadherin has been intensively studied due to its prevalence in tissue function and its spatiotemporal regulation during epithelial-to-mesenchymal cell transition. Nonetheless, regulating and studying the dynamics of it has proven challenging. We developed a photoswitchable version of E-cadherin, named opto-E-cadherin, which can be toggled OFF with blue light illumination and back ON in the dark.

View Article and Find Full Text PDF

The transition of bacteria from an individualistic to a biofilm lifestyle profoundly alters their biology. During biofilm development, the bacterial cell-cell adhesions are a major determinant of initial microcolonies, which serve as kernels for the subsequent microscopic and mesoscopic structure of the biofilm, and determine the resulting functionality. In this study, the significance of bacterial cell-cell adhesion dynamics on bacterial aggregation and biofilm maturation is elucidated.

View Article and Find Full Text PDF

Bacterial biofilm-associated infection was one of the most serious threats to human health. However, effective drugs for drug-resistance bacteria or biofilms remain rarely reported. Here, we propose an innovative strategy to develop a multifunctional antimicrobial agent with broad-spectrum antibacterial activity by coupling photosensitizers (PSs) with antimicrobial peptides (AMPs).

View Article and Find Full Text PDF
Article Synopsis
  • This study investigated how different factors influence treatment responses in patients with moderate-to-severe psoriasis receiving medications like guselkumab, adalimumab, and secukinumab.
  • Data from clinical trials involving over 1,900 patients were analyzed, focusing on short-term and long-term response types categorized by the Psoriasis Area and Severity Index (aPASI) scores.
  • Results highlighted that early responses and specific baseline characteristics, such as obesity and smoking status, play a significant role in determining the effectiveness of the treatments over time.
View Article and Find Full Text PDF

The precise localization and activation of proteins at the cell membrane at a certain time gives rise to many cellular processes, including cell polarization, migration, and division. Thus, methods to recruit proteins to model membranes with subcellular resolution and high temporal control are essential when reproducing and controlling such processes in synthetic cells. Here, a method is described for fabricating light-regulated reversible protein patterns at lipid membranes with high spatiotemporal precision.

View Article and Find Full Text PDF

In recent decades, significant progress has been made in the treatment of heart diseases, particularly in the field of personalized medicine. Despite the development of genetic tests, phenotyping and risk stratification are performed based on clinical findings and invasive in vivo techniques, such as stimulation conduction mapping techniques and programmed ventricular pacing. Consequently, label-free non-invasive in vitro functional analysis systems are urgently needed for more accurate and effective in vitro risk stratification, model-based therapy planning, and clinical safety profile evaluation of drugs.

View Article and Find Full Text PDF

Optogenetics has opened new possibilities in the remote control of diverse cellular functions with high spatiotemporal precision using light. However, delivering light to optically non-transparent systems remains a challenge. Here, we describe the photoactivation of light-oxygen-voltage-sensing domains (LOV domains) with generated light from a chemiluminescence reaction between luminol and HO.

View Article and Find Full Text PDF

We have developed an open-source workflow that allows for quantitative single-cell analysis of organelle morphology, distribution, and inter-organelle contacts with an emphasis on the analysis of mitochondria and mitochondria-endoplasmic reticulum (mito-ER) contact sites. As the importance of inter-organelle contacts becomes more widely recognized, there is a concomitant increase in demand for tools to analyze subcellular architecture. Here, we describe a workflow we call MitER (pronounced "mightier"), which allows for automated calculation of organelle morphology, distribution, and inter-organelle contacts from 3D renderings by employing the animation software Blender.

View Article and Find Full Text PDF

Background: The anti-interleukin-23 antibody guselkumab (GUS) demonstrated favourable week 24 efficacy and safety over fumaric acid esters (FAE) in systemic treatment-naïve patients with moderate-to-severe plaque psoriasis (study part I).

Objectives: To compare, in study part II, the sustainability of treatment responses (weeks 24-32) in GUS- and FAE-treated patients and treatment responses (weeks 32-56) in patients treated with GUS and FAE and in FAE nonresponders switching to GUS; and, in part III, to investigate the maintenance of response through week 100 in patients withdrawn from GUS at week 56.

Methods: At week 0, systemic treatment-naïve patients were randomized 1 : 1 to GUS or FAE as per label.

View Article and Find Full Text PDF