Publications by authors named "Weeradej Meeinkuirt"

The hyperaccumulation potential of zinc (Zn) and cadmium (Cd) and their synergistic effects were examined in relation to Christmas moss (Vesicularia montagnei (Bél) Broth., Hypnaceae), an aquatic and terrestrial moss, dosed with Cd (Cd1 and Cd2), Zn (Zn1 and Zn2) and combined Zn and Cd (Cd1Zn1 and Cd2Zn2). Zinc promoted plant growth and development, particularly in the highest Zn and combined Zn/Cd treatments (Zn2 and Cd2Zn2).

View Article and Find Full Text PDF

Marigolds (Tagetes erecta L.) were evaluated for phytoremediation potential of cadmium (Cd) and zinc (Zn) as a function of amendment application to soil. Vermicompost (V), biodigestate (Bi), and combined V + Bi (VBi) were used as soil amendments in Zn and Cd co-contaminated soils.

View Article and Find Full Text PDF

Necrophagous flies may be effective bioindicators of chemical substances within polluted locations, as they are sensitive to environmental changes, have large populations, and thrive in a single location over their lifespan. Diversity and abundance of necrophagous flies were determined at livestock farms contaminated with potentially toxic elements (PTEs) in Tak Province and Nakhon Sawan Province, Thailand. Substantial soil zinc (Zn) concentrations (> 1100 mg kg) were detected at a cattle farm at Khaothong, Nakhon Sawan Province, and soil cadmium (Cd) values were significantly elevated (> 3 mg kg) at a cattle farm in Pha De, Tak Province.

View Article and Find Full Text PDF

Biofertilizer as an amendment has growing awareness. Little attention has been paid to bioremediation potential of indigenous heavy-metal-resistant microbes, especially when isolated from long-term polluted soil, as a bioinoculant in biofertilizers. Biofertilizers are a type of versatile nutrient provider and soil conditioner that is cost-competitive and highly efficient with nondisruptive detoxifying capability.

View Article and Find Full Text PDF

Scopelophila cataractae was cultured in vitro for 16 weeks to assess the contrasting effects of Cu on growth and reproduction, as well as gametophore stage. To induce buds and gametophores of S. cataractae, ten treatments (tr 1 to tr 10) of culture media were prepared using a combination of mineral salts, sugar, vitamin B complex, CuSO, and exogenous hormones.

View Article and Find Full Text PDF

The effects of organic amendments on the phytoremediation of cadmium (Cd) in acacia (Acacia mangium), jatropha (Jatropha curcas), and cassava (Manihot esculenta) were investigated. The bone meal/bat manure and leonardite/bat manure amendments resulted in better growth performance in both acacia and cassava (growth rate in dry biomass; GRDB 24.2 and 22.

View Article and Find Full Text PDF

The species diversity and heavy metal accumulation in bryophytes were determined in Huay Pah Lahd stream in Doi Suthep-Pui National Park, Thailand. Eight bryophytes from two major taxonomic groupings (epilithic mosses and liverworts) were investigated. Of these, Fissidens crispulus var.

View Article and Find Full Text PDF

The marigolds (Tagetes spp.) in this study were classified as excluders for cadmium (Cd); however, their leaves also accumulated substantial Cd content. Among the experimental treatments (i.

View Article and Find Full Text PDF

Four specimens of gametophores and protonemata of Scopelophila cataractae (copper moss) were collected from a stream in Doi Suthep-Pui National Park, Thailand in order to determine heavy metal accumulation and Cu localization. The order of total metal concentrations in the protonemata and leaf cell surfaces of S. cataractae was Fe > Zn > Cu.

View Article and Find Full Text PDF

Cadmium (Cd) and zinc (Zn) accumulation and uptake ability have been investigated in three ornamental monocot plants (Heliconia psittacorum x H. spathocircinata, Echinodorus cordifolius, and Pontederia cordata) grown in hydroponic systems. All study plants in the highest heavy metal treatments were found to be excluders for Cd and Zn with translocation factor values < 1 and bioconcentration factor (BCF) values > 100.

View Article and Find Full Text PDF

Zinc mining and smelting activities result in cadmium (Cd) and zinc (Zn) contamination in rice grains, causing deleterious impacts on human health and local economies. Here, we investigated the effects of soil amendments, including mixtures of dicalcium phosphate with cattle manure (T1) and leonardite (T2), on soil physicochemical properties as well as growth performance and accumulation of Cd and Zn among three commercial Thai rice varieties: Khao Dok Mali 105 (KDML105), Phitsanulok2 (PSL2) and RD3, grown in a Cd-Zn co-contaminated paddy field. Human health risk was assessed using the health risk index (HRI) and Daily Intake of Metal (DIM).

View Article and Find Full Text PDF

Certain plants have demonstrated the capability to take up and accumulate metals, thus offering the potential to remediate metal-contaminated water and sediment. Several aquatic species have further been identified which can take up metal and metal oxide engineered nanoparticles (ENPs). It is important to evaluate if aquatic plants exhibiting potential for metal phytoremediation can be applied to remediation of metallic ENPs.

View Article and Find Full Text PDF

In recent years, ornamental plants have come under investigation as phytoremediation agents. In addition to reducing contaminant concentrations in soil, such plants support local economies by serving social (e.g.

View Article and Find Full Text PDF

Cadmium (Cd) contamination in paddy fields affects human health because of the consumption of Cd-contaminated rice. In the current study, we demonstrated that variation in root system architecture (RSA) influenced Cd uptake by rice. Rice cultivars consisting of KDML105, Mali Dang, Pitsanulok2 and Niaw San-pah-tawng were assessed in hydroponics and mesocosms while KDML 105, Pitsanulok2, and RD53 were used in field experiments.

View Article and Find Full Text PDF

Cadmium (Cd) may be toxic to aquatic plants even at modest concentrations, and excessive quantities of zinc (Zn) decrease plant performance. The Cd and Zn phytoremediation potential of several aquatic plant species (Thalia geniculate, Cyperus alternifolius, Canna indica, Eichhornia crassipes, Pistia stratiotes) and one grass species (Vetiveria zizanioides) was evaluated in hydroponic experiments. Vetiveria zizanioides, E.

View Article and Find Full Text PDF

This study determines uptake and accumulation of radionuclides and heavy metals by Pluchea indica and Avicennia marina and evaluates phytoremediation potential via greenhouse and field experiments. P. indica and A.

View Article and Find Full Text PDF

The ability of a mixture of Typha angustifolia and Eichhornia crassipes to remove organics, nutrients, and heavy metals from wastewater from a Thailand fresh market was studied. Changes in physicochemical properties of the wastewater including pH, temperature, chemical oxygen demand, dissolved oxygen, biochemical oxygen demand (BOD), total P, TOC, conductivity, total Kjeldahl nitrogen, NO-N, NH-N, and metal (Pb, Cd, and Zn) concentrations were monitored. In the aquatic plant (AP) treatment, 100% survival of both species was observed.

View Article and Find Full Text PDF

Cadmium is a toxic metallic element that poses serious human health risks via consumption of contaminated agricultural products. The effect of mixtures of dicalcium phosphate and organic amendments, namely cow manure (MD) and leonardite (LD), on Cd and Zn uptake of three rice cultivars (KDML105, KD53, and PSL2) was examined in mesocosm experiments. Plant growth, Cd and Zn accumulation, and physicochemical properties of the test soils were investigated before and after plant harvest.

View Article and Find Full Text PDF

Mangrove ecosystems in Pattani Bay, Thailand are considered representatives for monitoring the occurrence of anthropogenic and natural pollution due to metal and radionuclide contamination. Sediments and seawater were collected from five locations to determine metal (Cd, Cr, Cu, Mn, Ni, Zn, and Pb) and radionuclide (Ra, Th, and K) concentrations. Spatial variations in metal and radionuclide concentrations were determined among the sampling sites.

View Article and Find Full Text PDF

Little is known regarding phytoremediation of radionuclides from soil; even less is known about radionuclide contamination and removal in tropical ecosystems such as mangrove forests. In mangrove forests in Pattani Bay, Thailand, 18 plant species from 17 genera were evaluated for radionuclide concentrations within selected plant parts. Two shrub species, Avicennia marina and Pluchea indica, accumulated the highest Th (24.

View Article and Find Full Text PDF

The potential of 6 tree species (Leucaena leucocephala, Acacia mangium, Peltophorum pterocarpum, Pterocarpus macrocarpus, Lagerstroemia floribunda, Eucalyptus camaldulensis) for phytoremediation of Pb in sand tailings (total Pb >9850 mg kg(-1)) from KEMCO Pb mine in Kanchanaburi province, Thailand, were investigated employing a pot experiment (3 months) and field trial experiment (12 months). In pot study E. camaldulensis treated with Osmocote fertilizer attained the highest total biomass (15.

View Article and Find Full Text PDF