Publications by authors named "Weems A"

Background: To assess the relationship between patients' demographic, health system-related, and geosocial characteristics and the risk of missed appointments among patients in family medicine practice.

Methods: The study was based on a retrospective cross-sectional design using electronic health records and neighborhood-level social determents of health metrics linked by geocoded patients' home address. The study population consisted of patients who had a primary care provider and at least one appointment at 14 family medicine clinics in rural and suburban areas in January-December 2022.

View Article and Find Full Text PDF

In crowded microenvironments, migrating cells must find or make a path. Amoeboid cells are thought to find a path by deforming their bodies to squeeze through tight spaces. Yet, some amoeboid cells seem to maintain a near-spherical morphology as they move.

View Article and Find Full Text PDF

Cell segmentation is the fundamental task. Only by segmenting, can we define the quantitative spatial unit for collecting measurements to draw biological conclusions. Deep learning has revolutionized 2D cell segmentation, enabling generalized solutions across cell types and imaging modalities.

View Article and Find Full Text PDF

3D printing of pharmaceuticals offers a unique opportunity for long-term, sustained drug release profiles for an array of treatment options. Unfortunately, this approach is often limited by physical compounding or processing limitations. Modification of the active drug into a prodrug compound allows for seamless incorporation with advanced manufacturing methods that open the door to production of complex tissue scaffold drug depots.

View Article and Find Full Text PDF

Signal transduction and cell function are governed by the spatiotemporal organization of membrane-associated molecules. Despite significant advances in visualizing molecular distributions by 3D light microscopy, cell biologists still have limited quantitative understanding of the processes implicated in the regulation of molecular signals at the whole cell scale. In particular, complex and transient cell surface morphologies challenge the complete sampling of cell geometry, membrane-associated molecular concentration and activity and the computing of meaningful parameters such as the cofluctuation between morphology and signals.

View Article and Find Full Text PDF

Signal transduction and cell function are governed by the spatiotemporal organization of membrane-associated molecules. Despite significant advances in visualizing molecular distributions by 3D light microscopy, cell biologists still have limited quantitative understanding of the processes implicated in the regulation of molecular signals at the whole cell scale. In particular, complex and transient cell surface morphologies challenge the complete sampling of cell geometry, membrane-associated molecular concentration and activity and the computing of meaningful parameters such as the cofluctuation between morphology and signals.

View Article and Find Full Text PDF

Most human cells require anchorage for survival. Cell-substrate adhesion activates diverse signalling pathways, without which cells undergo anoikis-a form of programmed cell death. Acquisition of anoikis resistance is a pivotal step in cancer disease progression, as metastasizing cells often lose firm attachment to surrounding tissue.

View Article and Find Full Text PDF

Green manufacturing and reducing our cultural dependency on petrochemicals have been topics of growing interest in the past decade, particularly for three-dimensional (3D) printable photopolymers where often toxic solvents and reagents have been required. Here, a simple solvent-free, free-radical polymerization is utilized to homo- and copolymerize limonene and β-myrcene monomers to produce oligomeric photopolymers ( < 11 kDa) displaying Newtonian, low viscosities (∼10 Pa × s) suitable for thiol-ene photo-cross-linking, yielding photoset materials in a digital light processing (DLP)-type 3D printer. The resulting photosets display tunable thermomechanical properties (poly(limonene) displays elastic moduli exceeding 1 GPa) compared with previous works focusing on monomeric terpenes as well as four-dimensional (4D) shape memory behavior.

View Article and Find Full Text PDF

Life requires the oligomerization of individual proteins into higher-order assemblies. In order to form functional oligomers, monomers must adopt appropriate 3D structures. Molecular chaperones transiently bind nascent or misfolded proteins to promote proper folding.

View Article and Find Full Text PDF

3D printing has emerged as one of the most promising tools to overcome the processing and morphological limitations of traditional tissue engineering scaffold design. However, there is a need for improved minimally invasive, void-filling materials to provide mechanical support, biocompatibility, and surface erosion characteristics to ensure consistent tissue support during the healing process. Herein, soft, elastomeric aliphatic polycarbonate-based materials were designed to undergo photopolymerization into supportive soft tissue engineering scaffolds.

View Article and Find Full Text PDF

Shape memory poly(β-hydroxythioether) foams were produced using organobase catalyzed reactions between epoxide and thiol monomers, allowing for the rapid formation of porous media within approximately 5 min, confirmed using both rheology and physical foam blowing. The porous materials possess ultralow densities (0.022 g × cm) and gel fractions of approximately 93%.

View Article and Find Full Text PDF

Discrimination is a form of chronic stress and hair cortisol concentration is an emerging biomarker of chronic stress. In a sample of 83 first-year college students (age , , 69% female, 84% United States-born, 24% Asian, 21% Latinx, and 55% White), the current study investigates associations between hair cortisol concentration with discrimination stress assessed across two timeframes: past year and past two weeks. Significant associations were observed for past year discrimination and hair cortisol concentration levels, but not for discrimination over the past two weeks.

View Article and Find Full Text PDF

Despite the well-established role of actin polymerization as a driving mechanism for cell protrusion, upregulated actin polymerization alone does not initiate protrusions. Using a combination of theoretical modeling and quantitative live-cell imaging experiments, we show that local depletion of actin-membrane links is needed for protrusion initiation. Specifically, we show that the actin-membrane linker ezrin is depleted prior to protrusion onset and that perturbation of ezrin's affinity for actin modulates protrusion frequency and efficiency.

View Article and Find Full Text PDF

While many aromatic polyurethane systems suffer from poor hydrolytic stability, more recently proposed aliphatic systems are oxidatively-labile. The use of the renewable monomer glycerol as a more oxidatively-resistant moiety for inclusion in shape memory polymers (SMPs) is demonstrated here. Glycerol-containing SMPs and the amino alcohol control compositions are compared, with accelerated degradation testing displaying increased stability (time to complete mass loss) as a result of the inclusion of glycerol without sacrificing the shape memory, thermal transitions, or the ultralow density achieved with the control compositions.

View Article and Find Full Text PDF

Biocompatible polymers are widely used in tissue engineering and biomedical device applications. However, few biomaterials are suitable for use as long-term implants and these examples usually possess limited property scope, can be difficult to process, and are non-responsive to external stimuli. Here, we report a class of easily processable polyamides with stereocontrolled mechanical properties and high-fidelity shape memory behaviour.

View Article and Find Full Text PDF

The ability to control nanostructure shape and dimensions presents opportunities to design materials in which their macroscopic properties are dependent upon the nature of the nanoparticle. Although particle morphology has been recognized as a crucial parameter, the exploitation of the potential shape-dependent properties has, to date, been limited. Herein, we demonstrate that nanoparticle shape is a critical consideration in the determination of nanocomposite hydrogel properties.

View Article and Find Full Text PDF

The advent of additive manufacturing offered the potential to revolutionize clinical medicine, particularly with patient-specific implants across a range of tissue types. However, to date, there are very few examples of polymers being used for additive processes in clinical settings. The state of the art with regards to 3D printable polymeric materials being exploited to produce novel clinically relevant implants is discussed here.

View Article and Find Full Text PDF

Septin proteins evolved from ancestral GTPases and co-assemble into hetero-oligomers and cytoskeletal filaments. In , five septins comprise two species of hetero-octamers, Cdc11/Shs1-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11/Shs1. Slow GTPase activity by Cdc12 directs the choice of incorporation of Cdc11 vs Shs1, but many septins, including Cdc3, lack GTPase activity.

View Article and Find Full Text PDF

Biosourced materials are gaining interest industrially, but there are still limitations on the library of available materials suitable for advanced manufacturing, especially using photopolymerization-based processing techniques. Terpenes, such as myrcene, are naturally produced materials possessing structural features, specifically alkenes, that avail themselves for such techniques. Free-radical and anionic polymerization techniques were used to explore molecular architecture, such as branching, as well as molecular weight and dispersity on physical properties prior to the production of 3D printing photopolymer resins.

View Article and Find Full Text PDF

The production of monodisperse cylindrical micelles is a significant challenge in polymer chemistry. Most cylindrical constructs formed from diblock copolymers are produced by one of three techniques: thin film rehydration, solvent switching or polymerization-induced self-assembly, and produce only flexible, polydisperse cylinders. Crystallization-driven self-assembly (CDSA) is a method which can produce cylinders with these properties, by stabilizing structures of a lower curvature due to the formation of a crystalline core.

View Article and Find Full Text PDF

Current vascular aneurysm treatments often require either highly invasive strategy to surgically occlude an aneurysm or endovascular occlusion via metal coils. While endovascular coils are safer, they have limited efficacy. Endovascular coils that are integrated with shape memory polymer (SMP) foams have the potential to improve occlusion and reduce coil risks; however, the mechanical performance and limited homogeneity of SMP foams can hinder their effective use.

View Article and Find Full Text PDF

Minimally invasive medical devices are of great interest, with shape memory polymers (SMPs) representing one such possibility for producing these devices. Previous work with low density, highly porous SMPs has demonstrated oxidative degradation, while attempts to incorporate hydrolytic degradation have resulted in rapidly decreasing glass transition temperature (T ), ultimately preventing strain fixity of the materials at clinically relevant temperatures. Through esterification of the amino alcohol triethanolamine, an alcohol containing network was synthesized and incorporated into SMPs.

View Article and Find Full Text PDF

Shape memory polymers (SMPs) have been found to be promising biomaterials for a variety of medical applications; however, the clinical translation of such technology is dependent on tailorable properties such as gravimetric changes in degradation environments. For SMPs synthesized from amino-alcohols, oxidation resulting in rapid mass loss may be problematic in terms of loss of material functionality as well as toxicity and cytocompatibility concerns. Control of gravimetric changes was achieved through the incorporation of small molecule antioxidants, either directly into the polymer matrix or included in microparticles to form a SMP composite material.

View Article and Find Full Text PDF

Magnolol, a neolignan natural product with antioxidant properties, contains inherent, orthogonal, phenolic, and alkenyl reactive groups that were used in both direct thermoset synthesis, as well as the stepwise synthesis of a small library of monomers, followed by transformation into thermoset materials. Each monomer from the small library was prepared via a single step functionalization reaction of the phenolic groups of magnolol. Thermoset materials were realized through solvent-free, thiol-ene reactions, and the resulting cross-linked materials were each comprised of thioether and ester linkages, with one retaining the hydrophilic phenols from magnolol, another having the phenols protected as an acetonide, and two others incorporating the phenols into additional cross-linking sites via hydrolytically labile carbonates or stable ether linkages.

View Article and Find Full Text PDF

Emerging medical devices which employ shape memory polymers (SMPs) require precise measurements of the glass transition temperature (T) to ensure highly controlled shape recovery kinetics. Conventional techniques like differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) have limitations that prevent utilization for certain devices, including limited accuracy and the need for sacrificial samples. In this report, we employ an approach based on Brillouin spectroscopy to probe the glass transition of SMPs rapidly, remotely, and nondestructively.

View Article and Find Full Text PDF