Background: Aducanumab is an anti-amyloid-β (Aβ) antibody that achieved reduced amyloid pathology in Alzheimer's disease (AD) trials; however, it is controversial whether it also improved cognition, which has been suggested would require a sufficiently high cumulative dose of the antibody in the brain. Therapeutic ultrasound, in contrast, has only begun to be investigated in human AD clinical trials. We have previously shown that scanning ultrasound in combination with intravenously injected microbubbles (SUS), which temporarily and safely opens the blood-brain barrier (BBB), removes amyloid and restores cognition in APP23 mice.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) is a dynamic diffusional barrier regulating the molecular and chemical flux between the blood and brain, thereby preserving cerebral homeostasis. Endothelial cells form the core anatomical component of the BBB based on properties such as specialized junctional complexes between cells, which restricts paracellular transport, and extremely low levels of vesicular transport, restricting transcytosis. In performing its protective function, the BBB also constrains the entry of therapeutics into the brain, hampering the treatment of various neurological disorders.
View Article and Find Full Text PDFA major challenge in treating brain diseases is presented by the blood-brain barrier (BBB) that constitutes an efficient barrier not only for toxins but also a wide range of therapeutic agents. In overcoming this impediment, ultrasound in combination with intravenously injected microbubbles has emerged as a powerful technology that allows for the selective brain uptake of blood-borne factors and therapeutic agents by transient opening of the blood-brain barrier. We have previously shown that ultrasound in combination with microbubbles, but in the absence of a therapeutic agent, can effectively clear protein aggregates such as the hallmark lesions of Alzheimer's disease, amyloid-β (Aβ) plaques and Tau-containing neurofibrillary tangles.
View Article and Find Full Text PDFThe aim of this study was to determine the Poisson ratio of resin-based dental composites using a static tensile test method. Materials used in this investigation were from the same manufacturer (3M ESPE) and included microfill (A110), minifill (Z100 and Filtek Z250), polyacid-modified (F2000), and flowable (Filtek Flowable [FF]) composites. The Poisson ratio of the materials were determined after 1 week conditioning in water at 37 degrees C.
View Article and Find Full Text PDF