Publications by authors named "Wee Guan Lim"

PRK2/PKNgamma is a Rho effector and a member of the protein kinase C superfamily of serine/threonine kinases. Here, we explore the structure-function relationship between various motifs in the C-terminal half of PRK2 and its kinase activity and regulation. We report that two threonine residues at conserved phosphoacceptor position in the activation loop and the turn motif are essential for the catalytic activity of PRK2, but the phosphomimetic Asp-978 at hydrophobic motif is dispensable for kinase catalytic competence.

View Article and Find Full Text PDF

The segment C-terminal to the hydrophobic motif at the V5 domain of protein kinase C (PKC) is the least conserved both in length and in amino acid identity among all PKC isozymes. By generating serial truncation mutants followed by biochemical and functional analyses, we show here that the very C terminus of PKCalpha is critical in conferring the full catalytic competence to the kinase and for transducing signals in cells. Deletion of one C-terminal amino acid residue caused the loss of approximately 60% of the catalytic activity of the mutant PKCalpha, whereas deletion of 10 C-terminal amino acid residues abrogated the catalytic activity of PKCalpha in immune complex kinase assays.

View Article and Find Full Text PDF

PRK1 is a lipid- and Rho GTPase-activated serine/threonine protein kinase implicated in the regulation of receptor trafficking, cytoskeletal dynamics and tumorigenesis. Although Rho binding has been mapped to the HR1 region in the regulatory domain of PRK1, the mechanism involved in the control of PRK1 activation following Rho binding is poorly understood. We now provide the first evidence that the very C-terminus beyond the hydrophobic motif in PRK1 is essential for the activation of this kinase by RhoA.

View Article and Find Full Text PDF

In this article, we explore the role of the C-terminus (V5 domain) of PKCepsilon plays in the catalytic competence of the kinase using serial truncations followed by immune-complex kinase assays. Surprisingly, removal of the last seven amino acid residues at the C-terminus of PKCepsilon resulted in a PKCepsilon-Delta731 mutant with greatly reduced intrinsic catalytic activity while truncation of eight amino acid residues at the C-terminus resulted in a catalytically inactive PKCepsilon mutant. Computer modeling and molecular dynamics simulations showed that the last seven and/or eight amino acid residues of PKCepsilon were involved in interactions with residues in the catalytic core.

View Article and Find Full Text PDF

Protein kinase C (PKC) is a family of serine/threonine protein kinases that are pivotal in cellular regulation. Since its discovery in 1977, PKCs have been known as cytosolic and peripheral membrane proteins. However, there are reports that PKC can insert into phospholipids vesicles in vitro.

View Article and Find Full Text PDF

PRK1/PKN is a member of the protein kinase C (PKC) superfamily of serine/threonine protein kinases. Despite its important role as a RhoA effector, limited information is available regarding how this kinase is regulated. We show here that the last seven amino acid residues at the C-terminus is dispensable for the catalytic activity of PRK1 but is critical for the in vivo stability of this kinase.

View Article and Find Full Text PDF

Protein kinase C (PKC) is a key regulator of cell proliferation, differentiation, and apoptosis and is one of the drug targets of anticancer therapy. Recently, a single point mutation (D294G) in PKCalpha has been found in pituitary and thyroid tumors with more invasive phenotype. Although the PKCalpha-D294G mutant is implicated in the progression of endocrine tumors, no apparent biochemical/cell biological abnormalities underlying tumorigenesis with this mutant have been found.

View Article and Find Full Text PDF