The PETRA IV project aims at upgrading the present synchrotron radiation source PETRA III at DESY into an ultralow-emittance source. Being diffraction limited up to X-rays of about 10 keV, PETRA IV will be ideal for three-dimensional X-ray microscopy of biological, chemical and physical processes under realistic conditions at length scales from atomic dimensions to millimetres and time scales down to the sub-nanosecond regime. In this way, it will enable groundbreaking studies in many fields of science and industry, such as health, energy, earth and environment, mobility and information technology.
View Article and Find Full Text PDFWe report about the development and implementation of a new setup for time-resolved X-ray absorption fine structure spectroscopy at beamline P11 utilizing the outstanding source properties of the low-emittance PETRA III synchrotron storage ring in Hamburg. Using a high intensity micrometer-sized X-ray beam in combination with two positional feedback systems, measurements were performed on the transition metal complex fac-Tris[2-phenylpyridinato-C2,N]iridium(III) also referred to as fac-Ir(ppy)3. This compound is a representative of the phosphorescent iridium(III) complexes, which play an important role in organic light emitting diode (OLED) technology.
View Article and Find Full Text PDFAt low emittance synchrotron sources it has become possible to perform structure determinations from the measurement of multiple microcrystals which were previously considered too small for diffraction experiments. Conventional mounting techniques do not fulfill the requirements of these new experiments. They significantly contribute to background scattering and it is difficult to locate the crystals, making them incompatible with automated serial crystallography.
View Article and Find Full Text PDFStructural studies in general, and crystallography in particular, have benefited and still do benefit dramatically from the use of synchrotron radiation. Low-emittance storage rings of the third generation provide focused beams down to the micrometre range that are sufficiently intense for the investigation of weakly scattering crystals down to the size of several micrometres. Even though the coherent fraction of these sources is below 1%, a number of new imaging techniques have been developed to exploit the partially coherent radiation.
View Article and Find Full Text PDFWe present measurements of second- and higher-order intensity correlation functions (so-called Hanbury Brown-Twiss experiment) performed at the free-electron laser (FEL) FLASH in the non-linear regime of its operation. We demonstrate the high transverse coherence properties of the FEL beam with a degree of transverse coherence of about 80% and degeneracy parameter of the order 10(9) that makes it similar to laser sources. Intensity correlation measurements in spatial and frequency domain gave an estimate of the FEL average pulse duration of 50 fs.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
November 2012
In single-particle coherent x-ray diffraction imaging experiments, performed at x-ray free-electron lasers (XFELs), samples are exposed to intense x-ray pulses to obtain single-shot diffraction patterns. The high intensity induces electronic dynamics on the femtosecond time scale in the system, which can reduce the contrast of the obtained diffraction patterns and adds an isotropic background. We quantify the degradation of the diffraction pattern from ultrafast electronic damage by performing simulations on a biological sample exposed to x-ray pulses with different parameters.
View Article and Find Full Text PDFThe experimental characterization of the spatial and temporal coherence properties of the free-electron laser in Hamburg (FLASH) at a wavelength of 8.0 nm is presented. Double pinhole diffraction patterns of single femtosecond pulses focused to a size of about 10×10 μm(2) were measured.
View Article and Find Full Text PDFMeasurements of the spatial and temporal coherence of single, femtosecond x-ray pulses generated by the first hard x-ray free-electron laser, the Linac Coherent Light Source, are presented. Single-shot measurements were performed at 780 eV x-ray photon energy using apertures containing double pinholes in "diffract-and-destroy" mode. We determined a coherence length of 17 μm in the vertical direction, which is approximately the size of the focused Linac Coherent Light Source beam in the same direction.
View Article and Find Full Text PDFThe imaging of hydrated biological samples - especially in the energy window of 284-540 eV, where water does not obscure the signal of soft organic matter and biologically relevant elements - is of tremendous interest for life sciences. Free-electron lasers can provide highly intense and coherent pulses, which allow single pulse imaging to overcome resolution limits set by radiation damage. One current challenge is to match both the desired energy and the intensity of the light source.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2011
Coherent diffractive imaging using x-ray free-electron lasers (XFELs) may provide a unique opportunity for high-resolution structural analysis of single particles sprayed from an aqueous solution into the laser beam. As a result, diffraction images are measured from randomly oriented objects covered by a water layer. We analyze theoretically how the thickness of the covering water layer influences the structural and orientational information contained in the recorded diffraction images.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
April 2011
With the development of highly brilliant and extremely intense synchrotron X-ray sources, extreme high-resolution limits for biological samples are now becoming attainable. Here, a study is presented that sets the record in crystallographic resolution for a biological macromolecule. The structure of the small protein crambin was determined to 0.
View Article and Find Full Text PDFCoherent diffraction imaging of single biomolecules is expected to open unique opportunities for studies of non-crystalline samples. There are, however, still many technical and physical issues that need to be resolved in a more quantitative manner, especially if one aims for structural information at high resolution. Signal recorded from an object after a single shot is low.
View Article and Find Full Text PDFKinetic equations are used to model the dynamics of Xe clusters irradiated with short, intense vacuum-ultraviolet pulses. Various cluster size and pulse fluences are considered. It is found that the highly charged ions observed in the experiments are mainly due to Coulomb explosion of the outer cluster shell.
View Article and Find Full Text PDFFemtosecond vacuum ultraviolet (VUV) radiation provided by the free-electron laser FLASH was used for digital in-line holographic microscopy and applied to image particles, diatoms and critical point dried fibroblast cells. To realize the classical in-line Gabor geometry, a 1 microm pinhole was used as spatial filter to generate a divergent light cone with excellent pointing stability. At a fundamental wavelength of 8 nm test objects such as particles and diatoms were imaged at a spatial resolution of 620 nm.
View Article and Find Full Text PDFPhys Rev Lett
January 2009
Coherent diffractive imaging for the reconstruction of a two-dimensional (2D) finite crystal structure with a single pulse train of free-electron laser radiation at 7.97 nm wavelength is demonstrated. This measurement shows an advance on traditional coherent imaging techniques by applying it to a periodic structure.
View Article and Find Full Text PDFTwo single-crystal X-ray diffraction data sets of cyclosporine A were measured to high resolution using synchrotron radiation at temperatures of 5 and 90 K. They allowed an accurate determination of its molecular and electronic structure. Three electron-density models based on pseudoatom scattering factors were compared in terms of derived bond topological properties and in terms of electron-density differences on a grid.
View Article and Find Full Text PDFExperimental electron densities and derived properties have been determined for the two energetic materials CL-20 (3,5,9,11-tetraacetyl-14-oxo-1,3,5,7,9,11-hexaazapentacyclo-[5.5.3.
View Article and Find Full Text PDFThe optical rotatory power of achiral crystals of achiral pentaerythritol molecules was measured. The maximum rotations were found to be +/-6 degrees /mm. The quantum mechanically computed rotation of pentaerythritol molecules using linear response theory was 6 times larger although the experimental and theoretical tensors were similarly oriented to within 5 degrees .
View Article and Find Full Text PDFJ Synchrotron Radiat
November 1998
A comparative study has been made of the intensity profiles from three-beam experiments to estimate triplet phases using radiation from a conventional sealed-tube X-ray source and two different synchrotron sources. Synchrotron radiation, with its much smaller angular divergence, narrower spectral bandwidth and higher flux, distinctly improves the experimental conditions for physical phase estimation. Pure psi scans about the primary diffraction vector, such as can be made with a six-circle diffractometer, further improve the conditions compared with combined omega/psi scans with a four-circle instrument, where the rotation in psi is accomplished by combining rotations about the three axes omega, chi and varphi.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
May 2006
Structural analysis of the lectin SML-2 faced difficulties when applying standard crystallographic phasing methods. The connectivity-based ab initio phasing method allowed the computation of a 16 A resolution Fourier synthesis and the derivation of primary structural information. It was found that SML-2 crystals have three dimers in the asymmetric part of the unit cell linked by a noncrystallographic symmetry close to translation by (0, 0, 1/3).
View Article and Find Full Text PDFFor the second-generation asymmetric synthesis of the trans-tris(homoglutamic) acids via Strecker reaction of chiral ketimines, the cyanide addition as the key stereodifferentiating step produces mixtures of diastereomeric alpha-amino nitrile esters the composition of which is independent of the reaction temperature and the type of the solvent, respectively. The subsequent hydrolysis is exclusively achieved with concentrated H(2)SO(4) yielding diastereomeric mixtures of three secondary alpha-amino alpha-carbamoyl-gamma-esters and two diastereomeric cis-fused angular alpha-carbamoyl gamma-lactams as bicyclic glutamic acid derivatives, gained from in situ stereomer differentiating cyclisation of the secondary cis-alpha-amino alpha-carbamoyl-gamma-esters. Separation was achieved by CC.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
April 2006
The three-dimensional structure of hen egg-white lysozyme (HEWL) in a hexagonal crystal form has been determined and refined to 1.46 A resolution. This hexagonal crystal form crystallizes from a saturated sodium nitrate solution at pH 8.
View Article and Find Full Text PDFPerturbation of the two-beam diffracted power owing to the influence of a third lattice node has been examined for various three-beam cases in a small finite germanium crystal in the vicinity of the K-absorption edge. Although the crystal was slightly imperfect, the main parts of the experimental results are very well described within the framework of the fundamental theory of X-ray diffraction in conjunction with Cromer-Liberman calculations for the resonant scattering terms. Beam divergence and dynamical block size are treated as adjustable parameters in the analysis.
View Article and Find Full Text PDF