Publications by authors named "Weaver V"

Fibrosis accounts for approximately one-third of disease-related deaths globally. Current therapies fail to cure fibrosis, emphasizing the need to identify new antifibrotic approaches. Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and resultant stiffening of tissue stroma.

View Article and Find Full Text PDF

Development and disease are regulated by the interplay between genetics and the signaling pathways stimulated by morphogens, growth factors, and cytokines. Experimental data highlight the importance of mechanical force in regulating embryonic development, tissue morphogenesis, and malignancy. Force not only sculpts tissue movements to drive embryogenesis and morphogenesis but also modifies the context of biochemical signaling and gene expression to regulate cell and tissue fate.

View Article and Find Full Text PDF
Article Synopsis
  • In brain metastasis, cancer cells use nearby blood vessels to migrate, a process called vessel co-option, but how this works is not well understood.
  • Research using brain tissue models shows that the different stiffness levels between blood vessels and the surrounding brain tissue drive cancer cell movement.
  • The study reveals that cancer cells adhere to the vessel's basement membrane and that both the rigidity of the vessels and the softness of the brain tissue influence how these cells migrate, shedding light on how mechanical properties affect cancer invasion.
View Article and Find Full Text PDF

The pleiotropic roles of nSMase2-generated ceramide include regulation of intracellular ceramide signaling and exosome biogenesis. We investigated the effects of eliminating nSMase2 on early and advanced PDA, including its influence on the microenvironment. Employing the KPC mouse model of pancreatic cancer, we demonstrate that pancreatic epithelial nSMase2 ablation reduces neoplasia and promotes a PDA subtype switch from aggressive basal-like to classical.

View Article and Find Full Text PDF

Non-small cell lung cancers (NSCLC) harboring common mutations in EGFR and KRAS characteristically respond transiently to targeted therapies against those mutations, but invariably, tumors recur and progress. Resistance often emerges through mutations in the therapeutic target or activation of alternative signaling pathways. Mechanisms of acute tumor cell resistance to initial EGFR (EGFRi) or KRAS (G12Ci) pathway inhibition remain poorly understood.

View Article and Find Full Text PDF

Background: Among patients with opioid use disorder (OUD), high rates of overdose and death have been reported in subgroups with Hepatitis C Virus (HCV). Evidence on the comorbid effect of HCV on clinical and substance use trajectories has been limited by small sample sizes, short follow-up, and heavy reliance on administrative data which lacks granularity on important prognostic factors. Additionally, few studies include populations on substance use treatment.

View Article and Find Full Text PDF

Vitamin D status, the vitamin D receptor (VDR), and the ability to produce active vitamin D [1,25(OH)2D, regulated by Cyp27b1] regulate fetal and adult hematopoiesis. Transgenic reporter mice that express the tdTomato RFP as an indication of Vdr expression were used to identify immune cells that express the Vdr. Vdr/tdTomato+ hematopoietic progenitors were identified as early as embryonic day (E)15.

View Article and Find Full Text PDF

In this chapter, we aim to bridge basic molecular and cellular principles surrounding membrane curvature generation with rewiring of cellular signals in cancer through multiscale models. We describe a general framework that integrates signaling with other cellular functions like trafficking, cell-cell and cell-matrix adhesion, and motility. The guiding question in our approach is: how does a physical change in cell membrane configuration caused by external stimuli (including those by the extracellular microenvironment) alter trafficking, signaling and subsequent cell fate? We answer this question by constructing a modeling framework based on stochastic spatial continuum models of cell membrane deformations.

View Article and Find Full Text PDF

A definitive understanding of the interplay between protein binding/migration and membrane curvature evolution is emerging but needs further study. The mechanisms defining such phenomena are critical to intracellular transport and trafficking of proteins. Among trafficking modalities, exosomes have drawn attention in cancer research as these nano-sized naturally occurring vehicles are implicated in intercellular communication in the tumor microenvironment, suppressing anti-tumor immunity and preparing the metastatic niche for progression.

View Article and Find Full Text PDF
Article Synopsis
  • Tumor progression leads to fibrosis, which involves excessive buildup of extracellular matrix and reduces immune cell infiltration, particularly affecting CD8 T cells.
  • Tumor-associated macrophages (TAMs) adapt to the stiff fibrotic environment by promoting collagen production through signaling from transforming growth factor-β.
  • This collagen production by TAMs creates a challenging metabolic environment that limits the effectiveness of CD8 T cells, hindering their ability to mount strong antitumor responses in breast cancer patients.
View Article and Find Full Text PDF

Tissue folds are structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, finger-like protrusions that enable nutrient absorption. However, the molecular and mechanical processes driving villus morphogenesis remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Multicellular systems rely on extracellular matrices (ECM) for biochemical and mechanical signaling, but visualizing their structure is tricky due to the difficulties in labeling the biomolecules within them.
  • Researchers have introduced a small molecule fluorophore called Rhobo6, which binds to glycans in the ECM, allowing for effective visualization without washing the samples.
  • Rhobo6 offers advantages over existing methods, including better substrate compatibility, deeper tissue penetration, non-disruptive labeling, and reduced photobleaching, making it easier to study ECM in live tissues.
View Article and Find Full Text PDF

Brain metastatic breast cancer is particularly lethal largely due to therapeutic resistance. Almost half of the patients with metastatic HER2-positive breast cancer develop brain metastases, representing a major clinical challenge. We previously described that cancer-associated fibroblasts are an important source of resistance in primary tumors.

View Article and Find Full Text PDF

Collagen cross-links created by the lysyl oxidase and lysyl hydroxylase families of enzymes are a significant contributing factor to the biomechanical strength and rigidity of tissues, which in turn influence cell signaling and ultimately cell phenotype. In the clinic, the proteolytically liberated N-terminal cross-linked peptide of collagen I (NTX) is used as a biomarker of bone and connective tissue turnover, which is altered in several disease processes. Despite the clinical utility of these collagen breakdown products, the majority of the cross-linked peptide species have not been identified in proteomic datasets.

View Article and Find Full Text PDF

Tissue stem-progenitor cell frequency has been implicated in tumor risk and progression, but tissue-specific factors linking these associations remain ill-defined. We observed that stiff breast tissue from women with high mammographic density, who exhibit increased lifetime risk for breast cancer, associates with abundant stem-progenitor epithelial cells. Using genetically engineered mouse models of elevated integrin mechanosignaling and collagen density, syngeneic manipulations, and spheroid models, we determined that a stiff matrix and high mechanosignaling increase mammary epithelial stem-progenitor cell frequency and enhance tumor initiation in vivo.

View Article and Find Full Text PDF

Multiple respiratory hazards have been identified in the cannabis cultivation and production industry, in which occupational asthma and work-related exacerbation of preexisting asthma have been reported. An employee working in a Massachusetts cannabis cultivation and processing facility experienced progressively worsening work-associated respiratory symptoms, which culminated in a fatal asthma attack in January 2022. This report represents findings of an Occupational Safety and Health Administration inspection, which included a worksite exposure assessment, coworker and next-of-kin interviews, medical record reviews, and collaboration with the Massachusetts Department of Public Health.

View Article and Find Full Text PDF

Efforts to identify anti-cancer therapeutics and understand tumor-immune interactions are built with models that do not match the microenvironmental characteristics of human tissues. Using models which mimic the physical properties of healthy or cancerous tissues and a physiologically relevant culture medium, we demonstrate that the chemical and physical properties of the microenvironment regulate the composition and topology of the glycocalyx. Remarkably, we find that cancer and age-related changes in the physical properties of the microenvironment are sufficient to adjust immune surveillance via the topology of the glycocalyx, a previously unknown phenomenon observable only with a physiologically relevant culture medium.

View Article and Find Full Text PDF

Targeted protein degradation is an emerging strategy for the elimination of classically undruggable proteins. Here, to expand the landscape of targetable substrates, we designed degraders that achieve substrate selectivity via recognition of a discrete peptide and glycan motif and achieve cell-type selectivity via antigen-driven cell-surface binding. We applied this approach to mucins, O-glycosylated proteins that drive cancer progression through biophysical and immunological mechanisms.

View Article and Find Full Text PDF