Publications by authors named "Weand S Ybanez"

Castration-resistant prostate cancer (CRPC) is associated with resistance to androgen deprivation therapy, and an increase in the population of neuroendocrine (NE) differentiated cells. It is hypothesized that NE differentiated cells secrete neuropeptides that support androgen-independent tumor growth and induce aggressiveness of adjacent proliferating tumor cells through a paracrine mechanism. The cytochrome b561 (CYB561) gene, which codes for a secretory vesicle transmembrane protein, is constitutively expressed in NE cells and highly expressed in CRPC.

View Article and Find Full Text PDF

Background: Circadian disruption is an emerging driver of breast cancer (BCa), with epidemiological studies linking shift work and chronic jet lag to increased BCa risk. Indeed, several clock genes participate in the gating of mitotic entry, regulation of DNA damage response, and epithelial-to-mesenchymal transition, thus impacting BCa etiology. Dysregulated estrogen (17β-estradiol, E2) and glucocorticoid (GC) signaling prevalent in BCa may further contribute to clock desynchrony by directly regulating the expression and cycling dynamics of genes comprising the local breast oscillator.

View Article and Find Full Text PDF

Glucocorticoids (GCs; eg, hydrocortisone [CORT]) are routinely used as chemotherapeutic, anti-emetic, and palliative agents in breast cancer (BCa) therapy. The effects of GC signaling on BCa progression, however, remain a contentious topic as GC treatment seems to be beneficial for receptor-positive subtypes but elicits unfavorable responses in triple-negative BCa (TNBC). The mechanistic basis for these conflicting effects of GC in BCa is poorly understood.

View Article and Find Full Text PDF