Scaffold proteins are critical hubs within cells that have the ability to modulate upstream signaling molecules and their downstream effectors to fine-tune biological responses. Although they can serve as focal points for association of signaling molecules and downstream pathways that regulate tumorigenesis, little is known about how the tumor microenvironment affects the expression and activity of scaffold proteins. This study demonstrates that hypoxia, a common element of solid tumors harboring low oxygen levels, regulates expression of a specific variant of the scaffold protein AKAP12 (A-kinase anchor protein 12), AKAP12v2, in metastatic melanoma.
View Article and Find Full Text PDFSince its activity was first reported in the mid-1960s, macrophage migration inhibitory factor (MIF) has gone from a cytokine activity modulating monocyte motility to a pleiotropic regulator of a vast array of cellular and biological processes. Studies in recent years suggest that MIF contributes to malignant disease progression on several different levels. Both circulating and intracellular MIF protein levels are elevated in cancer patients and MIF expression reportedly correlates with stage, metastatic spread and disease-free survival.
View Article and Find Full Text PDFTumor hypoxia plays a crucial role in tumorigenesis. Under hypoxia, hypoxia-inducible factor 1 alpha (HIF-1 alpha) regulates activation of genes promoting malignant progression. Under normoxia, HIF-1 alpha is hydroxylated on prolines 402 and 564 and is targeted for ubiquitin-mediated degradation by interacting with the von Hippel-Lindau protein complex (pVHL).
View Article and Find Full Text PDFIncreasingly clear is an important regulatory role for hypoxia-inducible factor 1alpha (HIF-1alpha) in the expression of the cytokine/growth factor macrophage migration inhibitory factor (MIF). The functional significance of hypoxia-induced MIF expression is revealed by findings demonstrating that HIF-1alpha-dependent MIF expression is necessary for hypoxia-induced evasion from cell senescence and that MIF is necessary for HIF-1alpha stabilization induced by hypoxia and prolyl hydroxylase (PHD) inhibitors. Both of these activities attributed to MIF likely involve the modulation of protein degratory pathways mediated by cullin-dependent E3 ubiquitin ligase complexes and their regulation by the COP9 signalosome (CSN).
View Article and Find Full Text PDFLow oxygen tension-mediated transcription by hypoxia-inducible factors (HIF) has been reported to facilitate tumor progression, therapeutic resistance, and metastatic adaptation. One previously described target of hypoxia-mediated transcription is the cytokine/growth factor macrophage migration inhibitory factor (MIF). In studies designed to better understand hypoxia-stimulated MIF function, we have discovered that not only is MIF induced by hypoxia in pancreatic adenocarcinoma but MIF is also necessary for maximal hypoxia-induced HIF-1alpha expression.
View Article and Find Full Text PDFIn the last several years, multiple lines of evidence have suggested that the COP9 signalosome (CSN) plays a significant role in the regulation of multiple cancers and could be an attractive target for therapeutic intervention. First, the CSN plays a key role in the regulation of Cullin-containing ubiquitin E3 ligases that are central mediators of a variety of cellular functions essential during cancer progression. Second, several studies suggest that the individual subunits of the CSN, particularly CSN5, might regulate oncogenic and tumor suppressive functions independently of, or coordinately with, the CSN holocomplex.
View Article and Find Full Text PDFTo understand how cells respond to altered oxygenation, a frequent experimental paradigm is to isolate known components of bona fide oxygen responsive proteins. Recent studies have shown that a protein known as CSN5 or JAB1 interacts with both the HIF-1alpha oxygen-responsive transcription factor and its oxygen-dependent regulator, the Von Hippel-Lindau (pVHL) tumor suppressor. CSN5 is a component of the COP9 Signalosome (CSN) which is a multi-subunit protein that has high homology to the lid of the 19S lid of 26S proteasome.
View Article and Find Full Text PDFMammalian oxygen homeostasis is dependent on the HIF family of transcription factors. The CSN subunit, CSN5, binds both the CODD of HIF-1 alpha and the pVHL tumor suppressor. High CSN5 expression generates a pVHL-independent form of CSN5 that stabilizes HIF-1 alpha aerobically by inhibiting HIF-1 alpha prolyl-564 hydroxylation.
View Article and Find Full Text PDF