Publications by authors named "Wayne Szeto"

CRISPR-Cas has proven to be a powerful tool for precision genetic engineering in a variety of difficult genetic systems. In the highly tractable yeast S. cerevisiae, CRISPR-Cas can be used to conduct multiple engineering steps in parallel, allowing for engineering of complex metabolic pathways at multiple genomic loci in as little as 1 week.

View Article and Find Full Text PDF

CRISPR-Cas genome engineering in yeast has relied on preparation of complex expression plasmids for multiplexed gene knockouts and point mutations. Here we show that co-transformation of a single linearized plasmid with multiple PCR-generated guide RNA (gRNA) and donor DNA cassettes facilitates high-efficiency multiplexed integration of point mutations and large constructs. This technique allowed recovery of marker-less triple-engineering events with 64% efficiency without selection for expression of all gRNAs.

View Article and Find Full Text PDF

Novel drug targets can be identified by differential analysis of RNA transcripts isolated from cancer cell lines and tissues. We have extended this approach by analyzing differences in gene expression resulting from the drug treatment of transformed and nontransformed cells. A mouse mammary epithelial cell line (C57MG), which conditionally expresses the Wnt-1 proto-oncogene, was left untreated or treated with retinoic acid in the presence or absence of Wnt-1 expression.

View Article and Find Full Text PDF