A novel series of symmetrical ureas of [(7-amino(2-naphthyl))sulfonyl]phenylamines were designed, synthesized, and tested for their ability to increase glucose transport in mouse 3T3-L1 adipocytes, a surrogate readout for activation of the insulin receptor (IR) tyrosine kinase (IRTK). A structure-activity relationship was established that indicated glucose transport activity was dependent on the presence of two acidic functionalities, two sulfonamide linkages, and a central urea or 2-imidazolidinone core. Compound 30 was identified as a potent and selective IRTK activator.
View Article and Find Full Text PDFA novel series of 5-substituted isophthalamides and their structure-activity relationship as insulin receptor sensitizers is discussed.
View Article and Find Full Text PDFProtease inhibitor (PI) therapy for the treatment of patients infected with human immunodeficiency virus is frequently associated with insulin resistance and diabetic complications. These adverse effects of PI treatment result to a large extent from their inhibition of insulin-stimulated glucose transport. Insulin receptor (IR) activators that enhance the insulin signaling pathway could be effective in treating this resistance.
View Article and Find Full Text PDFIn type 2 diabetes mellitus, impaired insulin signaling leads to hyperglycemia and other metabolic abnormalities. TLK19780, a non-peptide small molecule, is a new member of a novel class of anti-diabetic agents that function as activators of the insulin receptor (IR) beta-subunit tyrosine kinase. In HTC-IR cells, 20 microm TLK19780 enhanced maximal insulin-stimulated IR autophosphorylation 2-fold and increased insulin sensitivity 2-3-fold.
View Article and Find Full Text PDF