Understanding the nature and extent of non-canonical human leukocyte antigen (HLA) presentation in tumour cells is a priority for target antigen discovery for the development of next generation immunotherapies in cancer. We here employ a de novo mass spectrometric sequencing approach with a refined, MHC-centric analysis strategy to detect non-canonical MHC-associated peptides specific to cancer without any prior knowledge of the target sequence from genomic or RNA sequencing data. Our strategy integrates MHC binding rank, Average local confidence scores, and peptide Retention time prediction for improved de novo candidate Selection; culminating in the machine learning model MARS.
View Article and Find Full Text PDFPosttranslational spliced peptides (PTSPs) are a unique class of peptides that have been found to be presented by HLA class-I molecules in cancer. Thus far, no consensus has been reached on the proportion of PTSPs in the immunopeptidome, with estimates ranging from 2% to as high as 45% and stirring significant debate. Furthermore, the role of the HLA class-II pathway in PTSP presentation has been studied only in diabetes.
View Article and Find Full Text PDFHuman leukocyte antigen (HLA) genes are the most polymorphic loci in the human genome and code for proteins that play a key role in guiding adaptive immune responses by presenting foreign and self peptides (ligands) to T cells. Each person carries up to 6 HLA class I variants (maternal and paternal copies of HLA-A, HLA-B and HLA-C genes) and also multiple HLA class II variants, which cumulatively define the landscape of peptides presented to T cells. Each HLA variant has its own repertoire of presented peptides with a certain sequence motif which is mainly defined by peptide anchor residues (typically the second and the last positions for HLA class I ligands) forming key interactions with the peptide-binding groove of HLA.
View Article and Find Full Text PDFThere is increasing evidence for the importance of human leukocyte antigen C (HLA-C)-restricted CD8 T cells in HIV-1 control, but these responses are relatively poorly investigated. The number of HLA-C-restricted HIV-1 epitopes identified is much smaller than those of HLA-A-restricted or HLA-B-restricted ones. Here, we utilized a mass spectrometry-based approach to identify HIV-1 peptides presented by HLA-C*14:03 protective and HLA-C*14:02 nonprotective alleles.
View Article and Find Full Text PDFHuman leukocyte antigen (HLA) is highly polymorphic and plays a key role in guiding adaptive immune responses by presenting foreign and self peptides to T cells. Each HLA variant selects a minor fraction of peptides that match a certain motif required for optimal interaction with the peptide-binding groove. These restriction rules define the landscape of peptides presented to T cells.
View Article and Find Full Text PDFProteasomes catalyze the degradation of endogenous proteins into oligopeptides, but can concurrently create spliced oligopeptides through ligation of previously non-contiguous peptide fragments. Recent studies have uncovered a formerly unappreciated role for proteasome-catalyzed peptide splicing (PCPS) in the generation of non-genomically templated human leukocyte antigen class I (HLA-I)-bound spliced peptides that can be targeted by CD8 T cells in cancer and infection. However, the mechanisms defining PCPS reactions are poorly understood.
View Article and Find Full Text PDFThe development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and therapeutics will depend on understanding viral immunity. We studied T cell memory in 42 patients following recovery from COVID-19 (28 with mild disease and 14 with severe disease) and 16 unexposed donors, using interferon-γ-based assays with peptides spanning SARS-CoV-2 except ORF1. The breadth and magnitude of T cell responses were significantly higher in severe as compared with mild cases.
View Article and Find Full Text PDFViral replication is defined by the cellular microenvironment and one key factor is local oxygen tension, where hypoxia inducible factors (HIFs) regulate the cellular response to oxygen. Human immunodeficiency virus (HIV) infected cells within secondary lymphoid tissues exist in a low-oxygen or hypoxic environment in vivo. However, the majority of studies on HIV replication and latency are performed under laboratory conditions where HIFs are inactive.
View Article and Find Full Text PDFCOVID-19 is an ongoing global crisis in which the development of effective vaccines and therapeutics will depend critically on understanding the natural immunity to the virus, including the role of SARS-CoV-2-specific T cells. We have conducted a study of 42 patients following recovery from COVID-19, including 28 mild and 14 severe cases, comparing their T cell responses to those of 16 control donors. We assessed the immune memory of T cell responses using IFNγ based assays with overlapping peptides spanning SARS-CoV-2 apart from ORF1.
View Article and Find Full Text PDFPeptides generated by proteasome-catalyzed splicing of noncontiguous amino acid sequences have been shown to constitute a source of nontemplated human leukocyte antigen class I (HLA-I) epitopes, but their role in pathogen-specific immunity remains unknown. CD8 T cells are key mediators of HIV type 1 (HIV-1) control, and identification of novel epitopes to enhance targeting of infected cells is a priority for prophylactic and therapeutic strategies. To explore the contribution of proteasome-catalyzed peptide splicing (PCPS) to HIV-1 epitope generation, we developed a broadly applicable mass spectrometry-based discovery workflow that we employed to identify spliced HLA-I-bound peptides on HIV-infected cells.
View Article and Find Full Text PDFDespite the fact that the cell surface expression level of HLA-C on both uninfected and HIV-infected cells is lower than those of HLA-A and -B, increasing evidence suggests an important role for HLA-C and HLA-C-restricted CD8 T cell responses in determining the efficiency of viral control in HIV-1-infected individuals. Nonetheless, HLA-C-restricted T cell responses are much less well studied than HLA-A/B-restricted ones, and relatively few optimal HIV-1 CD8 T cell epitopes restricted by HLA-C alleles have been defined. Recent improvements in the sensitivity of mass spectrometry (MS)-based approaches for profiling the immunopeptidome present an opportunity for epitope discovery on a large scale.
View Article and Find Full Text PDFChlamydia trachomatis (Ct) is the most common sexually transmitted bacterial pathogen, and the leading cause of infectious blindness worldwide. We have recently shown that immunization with the highly conserved antigenic passenger domain of recombinant Ct polymorphic membrane protein D (rPmpD) is protective in the mouse model of Ct genital tract infection, and previously, that ocular anti-rPmpD antibodies are elicited following vaccination. However, the mechanisms governing the assembly and structure-function relationship of PmpD are unknown.
View Article and Find Full Text PDFThe development of a chlamydial vaccine that elicits protective mucosal immunity is of paramount importance in combatting the global spread of sexually transmitted Chlamydia trachomatis (Ct) infections. While the identification and prioritization of chlamydial antigens is a crucial prerequisite for efficacious vaccine design, it is likely that novel adjuvant development and selection will also play a pivotal role in the translational potential of preclinical Ct vaccines. Although the molecular nature of the immuno-modulatory component is of primary importance, adjuvant formulation and delivery systems may also govern vaccine efficacy and potency.
View Article and Find Full Text PDFBackground: Ocular infection with Chlamydia trachomatis can cause trachoma, which is the leading cause of blindness due to infection worldwide. Despite the large-scale implementation of trachoma control programmes in the majority of countries where trachoma is endemic, there remains a need for a vaccine. Since C.
View Article and Find Full Text PDF