We image 4-mercaptobenzonitrile-functionalized silver nanowires (∼20 nm diameter) through tip-enhanced Raman scattering (TERS). The enhanced local optical field-molecular interactions that govern the recorded hyperspectral TERS images are dissected through hybrid finite-difference time-domain density functional theory simulations. Our forward simulations illustrate that the recorded spatiospectral profiles of the chemically functionalized nanowires may be reproduced by accounting for the interaction between orientationally averaged molecular polarizability derivative tensors and enhanced incident/scattered local fields polarized along the tip axis.
View Article and Find Full Text PDFSurface plasmon polaritons (SPPs) launched from a protruded silver spherical cap structure using s-polarized femtosecond laser excitation are investigated using photoemission electron microscopy. The resulting SPP is comparable in intensity to SPPs launched with p-polarized excitation but propagates with a distinct spatial profile. The spatial and temporal properties of the nascent SPP are determined by splitting the femtosecond pulse into a spatially separated pump-probe pair of orthogonal polarizations.
View Article and Find Full Text PDFNonequilibrium chemical phenomena are known to play an important role in single molecule microscopy and spectroscopy. Herein, we explore these effects through ab initio molecular dynamics (AIMD)-based Raman spectral simulations. We target an isolated aromatic thiol (thiobenzonitrile, TBN) as a prototypical molecular system.
View Article and Find Full Text PDFTip-enhanced Raman spectroscopy (TERS) is particularly sensitive to analytes residing at plasmonic tip-sample nanojunctions, where the incident and scattered optical fields may be localized and optimally enhanced. However, the enhanced local electric fields in this so-called gap-mode TERS configuration are nominally orthogonal to the sample plane. As such, any given Raman active vibrational eigenstate needs to have projections (of its polarizability derivative tensor elements) along the sample normal to be detectable via TERS.
View Article and Find Full Text PDFTip-enhanced Raman scattering (TERS) can be used to image plasmon-enhanced local electric fields on the nanoscale. This is illustrated through ambient TERS measurements recorded using silver atomic force microscope tips coated with 4-mercaptobenzonitrile molecules and used to image step edges on an Au(111) surface. The observed two-dimensional TERS images uniquely map electric fields localized at Au(111) step edges following 671 nm excitation.
View Article and Find Full Text PDFPropagating surface plasmons (PSPs) launched from a protruded silver spherical cap structure are investigated using photoemission electron microscopy (PEEM) and finite difference time domain (FDTD) calculations. Our combined experimental and theoretical findings reveal that PSP coupling efficiency is comparable to conventional etched-in plasmonic coupling structures. Additionally, plasmon propagation direction can be varied by linear rotation of the driving laser polarization.
View Article and Find Full Text PDFRecent developments in nanophotonics have paved the way for achieving significant advances in the realm of single-molecule chemical detection, imaging, and dynamics. In particular, surface-enhanced Raman scattering (SERS) is a powerful analytical technique that is now routinely used to identify the chemical identity of single molecules. Understanding how nanoscale physical and chemical processes affect single-molecule SERS spectra and selection rules is a challenging task and is still actively debated.
View Article and Find Full Text PDFThe relative intensities of propagating surface plasmons (PSPs) simultaneously launched from opposing edges of a symmetric trench structure etched into a silver thin film may be controllably varied by tuning the linear polarization of the driving field. This is demonstrated through transient multiphoton photoemission electron microscopy measurements performed using a pair of spatially separated phase-locked femtosecond pulses. Our measurements are rationalized using finite-difference time domain simulations, which reveal that the coupling efficiency into the PSP modes is inversely proportional to the magnitude of the localized surface plasmon fields excited at the trench edges.
View Article and Find Full Text PDFSimulating the spectroscopic properties of short-lived thermal and photochemical reaction intermediates and products is a challenging task, as these species often feature atypical molecular and electronic structures. The complex environments in which such species typically reside in practice add further complexity to the problem. Herein, we tackle this problem in silico using ab initio molecular dynamics (AIMD) simulations, employing iso-CHBr3, namely H(Br)C-Br-Br, as a prototypical system.
View Article and Find Full Text PDFWe describe surface enhanced Raman spectroscopy (SERS) experiments in which molecular coverage is systematically varied from 3.8 × 10(5) to 3.8 × 10(2) to 0.
View Article and Find Full Text PDFNonlinear photoemission electron microscopy (PEEM) of nanohole arrays in gold films is used to map propagating surface plasmons (PSPs) launched from lithographically patterned structures. Strong near-field photoemission patterns are observed in the PEEM images, recorded following low angle of incidence irradiation of nanohole arrays with sub-15 fs laser pulses centered at 780 nm. The recorded photoemission patterns are attributed to constructive and destructive interference between PSPs launched from the individual nanoholes which comprise the array.
View Article and Find Full Text PDFCarbon-hydrogen (C-H) vibration modes serve as key probes in the chemical identification of hydrocarbons and in vibrational sum-frequency generation spectroscopy of hydrocarbons at the liquid/gas interface. Their assignments pose a challenge from a theoretical viewpoint. In this work, we present a detailed study of the C-H stretching region of dimethyl sulfoxide using a new ab initio molecular dynamics (AIMD) module that we have implemented in NWChem.
View Article and Find Full Text PDFWe record time-resolved nonlinear photoemission electron microscopy (tr-PEEM) images of propagating surface plasmons (PSPs) launched from a lithographically patterned rectangular trench on a flat gold surface. Our tr-PEEM scheme involves a pair of identical, spatially separated, and interferometrically locked femtosecond laser pulses. Power-dependent PEEM images provide experimental evidence for a sequential coherent nonlinear photoemission process, in which one laser source launches a PSP through a linear interaction, and the second subsequently probes the PSP via two-photon photoemission.
View Article and Find Full Text PDFWe report tip-enhanced Raman imaging experiments in which information on sample topography and local electric fields is simultaneously obtained using an all-optical detection scheme. We demonstrate how a Raman-active 4,4'-dimercaptostilbene (DMS)-coated gold tip of an atomic force microscope can be used to simultaneously map the topography and image the electric fields localized at nanometric (20 and 5 nm wide) slits lithographically etched in silver, all using optical signals. Bimodal imaging is feasible by virtue of the frequency-resolved optical response of the functionalized metal probe.
View Article and Find Full Text PDFWe investigate the plasmonic properties of a self-assembled 2D array of Ag nanospheres (average particle diameter/inter-particle separation distance of 9/3.7 nm). The structures of the individual particles and their assemblies are characterized using high-resolution transmission electron microscopy (HR-TEM).
View Article and Find Full Text PDFWe record sequences of Raman spectra at a plasmonic junction formed by a gold AFM tip in contact with a silver surface coated with 4,4'-dimercaptostilbene (DMS). A 2D correlation analysis of the recorded trajectories reveals that the observable vibrational states can be divided into subsets, by virtue of the symmetry of DMS (C2h). The first set comprises the totally symmetric vibrations of DMS (ag) that are neither correlated with each other nor with the fluctuating background, assigned to the signature of charge-transfer plasmons mediated by DMS.
View Article and Find Full Text PDFWe use angle-resolved photoemission under ultraviolet laser excitation to demonstrate that the electron emission properties of Ag(001) can be markedly enhanced and redirected along the surface normal by the deposition of a few monolayers of epitaxial MgO. We observe new low-binding energy states with small spreads in their surface parallel momenta as a result of MgO/Ag(001) interface formation. Under 4.
View Article and Find Full Text PDFThe electronic and vibrational properties of meso-tetraphenylporphyrin (mtpp) on silver substrates are investigated using UV-vis and surface-enhanced resonance Raman scattering (SERRS) spectroscopy. Whereas the vibrational signatures associated with the tetrapyrrole backbone exhibit minor variations throughout sequences of consecutively recorded SERRS spectra, the C═C stretching vibrational modes localized on the meso-phenyl moieties of mtpp exhibit noticeable intensity fluctuations, masked in the average SERRS response. We attribute the observed vibrational-state-specific blinking events to conformational changes in mtpp, namely, torsional flexibility which mediates the coupling between the π-framework of the meso-phenyls and the underlying metal substrate.
View Article and Find Full Text PDFThe atom-centered density-matrix propagation method is used to illustrate how time-dependent conformational changes affect the electronic structure and derived spectroscopic properties of a prototypical finite metal cluster-bound π-conjugated organic complex, Ag7-benzenethiol. We establish that there is considerable conformational flexibility to the model structure, even at relatively low temperatures, which influences the predicted spectroscopic properties. Namely, the computed electron densities, dipoles, and polarizabilities are all dictated by torsional motion which controls the coupling between the π-framework of the chemisorbed molecular system and the cluster.
View Article and Find Full Text PDFThrough thermally annealing well-arrayed, circular, nanoscale thin films of gold, deposited onto [111] silicon/silicon dioxide substrates, both solid and hollow gold particles of different morphologies with controllable sizes were obtained. The circular thin films formed individual particles or clusters of particles by tuning their diameter. Hollow gold particles were characterized by their diameter, typically larger than 400 nm; these dimensions and properties were confirmed by cross-section scanning electron microscopy.
View Article and Find Full Text PDFWe use multi-photon photoemission electron microscopy (PEEM) to image the enhanced electric fields of silver nanoparticles supported on a silver thin film substrate. Electromagnetic field enhancement is measured by comparing the photoelectron yield of the nanoparticles with respect to the photoelectron yield of the surrounding silver thin film. We investigate the dependence of the photoelectron yield of the nanoparticle as a function of size and shape.
View Article and Find Full Text PDFIntensity spikes in Raman scattering, accompanied by switching between line spectra and band spectra, can be assigned to shorting the junction plasmon through molecular conductive bridges. This is demonstrated through Raman trajectories recorded at a plasmonic junction formed by a gold AFM tip in contact with a silver surface coated either with biphenyl-4,4'-dithiol or biphenyl-4-thiol. The fluctuations are absent in the monothiol.
View Article and Find Full Text PDFWe use photoemission electron microscopy (PEEM) to image 3 μm diameter polystyrene spheres supported on a metal thin film illuminated by 400 nm (∼3.1 eV) and 800 nm (∼1.5 eV) femtosecond (fs) laser pulses.
View Article and Find Full Text PDFWe present results of a combined two-photon photoemission and scanning electron microscopy investigation to determine the electromagnetic enhancement factors of silver-coated spherical nanoparticles deposited on an atomically flat mica substrate. Femtosecond laser excitation of the nanoparticles produces intense photoemission, attributed to near-resonant excitation of localized surface plasmons. Enhancement factors are determined by comparing the respective two-photon photoemission yields measured for single nanoparticles and the surrounding flat surface.
View Article and Find Full Text PDFBand-to-band photoexcitation of potassium iodide single crystals with UV photons produces thermal and hyperthermal I-atom emission in both the ground I((2)P(3/2)) and spin-orbit excited I( *)((2)P(1/2)) states. Thermal halogen atom emission is preceded by H-center diffusion from bulk to surface and excited atom emission indicates that the excited hole spin state relaxation is incomplete before H-center diffusion to the surface. The hyperthermal I-atom kinetic energy distribution is inverted in the sense that the electronically excited I( *)((2)P(1/2)) atoms are more energetic than the ground state I((2)P(3/2)) atoms.
View Article and Find Full Text PDF