Terpenoid synthases catalyze isoprenoid cyclization reactions underlying the generation of more than 80,000 natural products. Such dramatic chemodiversity belies the fact that these enzymes generally consist of only three domain folds designated as α, β, and γ. Catalysis by class I terpenoid synthases occurs exclusively in the α domain, which is found with α, αα, αβ, and αβγ domain architectures.
View Article and Find Full Text PDFIncubation of synthetic 2-methylneryl diphosphate (2-MeNPP, 10) with 2-methylisoborneol synthase (MIBS) gave a mixture of products that differed significantly from that derived from the natural substrate (E)-2-methylgeranyl diphosphate (3, 2-MeGPP). The proportion of (-)-2-methylisoborneol (1) decreased from 89 to 17% while that of 2-methylenebornane (4) increased from 10 to 26%, with the relative yields of the isomeric homo-monoterpenes 2-methyl-2-bornene (5) and 1-methylcamphene (6) remaining essentially unchanged (<1% each), as determined by chiral GC-MS analysis. The majority of the product mixture resulting from the MIBS-catalyzed cyclization of 2-MeNPP (10) consisted of the anomalous monocyclic homo-monoterpenes (±)-2-methylllimonene (15, 39%) and 2-methyl-α-terpineol (13, 10%), as well as the acylic derivatives 2-methylnerol (11, 7%) and 2-methyllinalool (14, <1%).
View Article and Find Full Text PDFThe T296V mutant of amorpha-4,11-diene synthase catalyzes the abortive conversion of the natural substrate (E,E)-farnesyl diphosphate mainly into the acyclic product (E)-β-farnesene (88%) instead of the natural bicyclic sesquiterpene amorphadiene (7%). Incubation of the T296V mutant with (3R,6E)-nerolidyl diphosphate resulted in cyclization to amorphadiene. Analysis of additional mutants of amino acid residue 296 and in vitro assays with the intermediate analogue (2Z,6E)-farnesyl diphosphate as well as (3S,6E)-nerolidyl diphosphate demonstrated that the T296V mutant can no longer catalyze the allylic rearrangement of farnesyl diphosphate to the normal intermediate (3R,6E)-nerolidyl diphosphate, while retaining the ability to cyclize (3R,6E)-nerolidyl diphosphate to amorphadiene.
View Article and Find Full Text PDFAristolochene synthase (ATAS) is a high-fidelity terpenoid cyclase that converts farnesyl diphosphate exclusively into the bicyclic hydrocarbon aristolochene. Previously determined crystal structures of ATAS complexes revealed trapped active site water molecules that could potentially interact with catalytic intermediates: water "w" hydrogen bonds with S303 and N299, water molecules "w1" and "w2" hydrogen bond with Q151, and a fourth water molecule coordinates to the Mg(2+)C ion. There is no obvious role for water in the ATAS mechanism because the enzyme exclusively generates a hydrocarbon product.
View Article and Find Full Text PDFFusicoccin A is a diterpene glucoside phytotoxin generated by the fungal pathogen Phomopsis amygdali that causes the plant disease constriction canker, first discovered in New Jersey peach orchards in the 1930s. Fusicoccin A is also an emerging new lead in cancer chemotherapy. The hydrocarbon precursor of fusicoccin A is the tricyclic diterpene fusicoccadiene, which is generated by a bifunctional terpenoid synthase.
View Article and Find Full Text PDFGeosmin synthase from Streptomyces coelicolor (ScGS) catalyzes an unusual, metal-dependent terpenoid cyclization and fragmentation reaction sequence. Two distinct active sites are required for catalysis: the N-terminal domain catalyzes the ionization and cyclization of farnesyl diphosphate to form germacradienol and inorganic pyrophosphate (PPi), and the C-terminal domain catalyzes the protonation, cyclization, and fragmentation of germacradienol to form geosmin and acetone through a retro-Prins reaction. A unique αα domain architecture is predicted for ScGS based on amino acid sequence: each domain contains the metal-binding motifs typical of a class I terpenoid cyclase, and each domain requires Mg(2+) for catalysis.
View Article and Find Full Text PDFThe class I terpenoid cyclase epi-isozizaene synthase (EIZS) utilizes the universal achiral isoprenoid substrate, farnesyl diphosphate, to generate epi-isozizaene as the predominant sesquiterpene cyclization product and at least five minor sesquiterpene products, making EIZS an ideal platform for the exploration of fidelity and promiscuity in a terpenoid cyclization reaction. The hydrophobic active site contour of EIZS serves as a template that enforces a single substrate conformation, and chaperones subsequently formed carbocation intermediates through a well-defined mechanistic sequence. Here, we have used the crystal structure of EIZS as a guide to systematically remold the hydrophobic active site contour in a library of 26 site-specific mutants.
View Article and Find Full Text PDFThe crystal structure of 2-methylisoborneol synthase (MIBS) from Streptomyces coelicolor A3(2) has been determined in its unliganded state and in complex with two Mg(2+) ions and 2-fluoroneryl diphosphate at 1.85 and 2.00 Å resolution, respectively.
View Article and Find Full Text PDFThe crystal structure of 2-methylisoborneol synthase (MIBS) from Streptomyces coelicolor A3(2) has been determined in complex with substrate analogues geranyl-S-thiolodiphosphate and 2-fluorogeranyl diphosphate at 1.80 and 1.95 Å resolution, respectively.
View Article and Find Full Text PDFGeranyl diphosphate C-methyltransferase (GPPMT) from Streptomyces coelicolor A3(2) is the first methyltransferase discovered that modifies an acyclic isoprenoid diphosphate, geranyl diphosphate (GPP), to yield a noncanonical acyclic allylic diphosphate product, 2-methylgeranyl diphosphate, which serves as the substrate for a subsequent cyclization reaction catalyzed by a terpenoid cyclase, methylisoborneol synthase. Here, we report the crystal structures of GPPMT in complex with GPP or the substrate analogue geranyl S-thiolodiphosphate (GSPP) along with S-adenosyl-L-homocysteine in the cofactor binding site, resulting from in situ demethylation of S-adenosyl-L-methionine, at 2.05 or 1.
View Article and Find Full Text PDFThe pfl_1841 gene from Pseudomonas fluorescens PfO-1 is the only gene in any of the three sequenced genomes of the Gram-negative bacterium Pseudomonas fluorescens that is annotated as a putative terpene synthase. The predicted Pfl_1841 protein, which harbors the two strictly conserved divalent metal binding domains found in all terpene cyclases, is closely related to several known or presumed 2-methylisoborneol synthases, with the closest match being to the MOL protein of Micromonaspora olivasterospora KY11048 that has been implicated as a 2-methylenebornane synthase. A synthetic gene encoding P.
View Article and Find Full Text PDFTwo presumptive terpene synthases of unknown biochemical function encoded by the sscg_02150 and sscg_03688 genes of Streptomyces clavuligerus ATCC 27074 were individually expressed in Escherichia coli as N-terminal-His₆-tag proteins, using codon-optimized synthetic genes. Incubation of recombinant SSCG_02150 with farnesyl diphosphate (1, FPP) gave (-)-δ-cadinene (2) while recombinant SSCG_03688 converted FPP to (+)-T-muurolol (3). Individual incubations of (-)-δ-cadinene synthase with [1,1-²H₂]FPP (1a), (1S)-[1-²H]-FPP (1b), and (1R)-[1-²H]-FPP (1c) and NMR analysis of the resulting samples of deuterated (-)-δ-cadinene supported a cyclization mechanism involving the intermediacy of nerolidyl diphosphate (4) leading to a helminthogermacradienyl cation 5.
View Article and Find Full Text PDFBioorg Med Chem Lett
February 2011
6''-Azido-6''-deoxy-UDP-N-acetylglucosamine (UDP-6Az-GlcNAc) is a potential alternate substrate for N-acetylglucosaminyltransferases. This compound could be used to generate various glycoconjugates bearing an azide functionality that could in turn be subjected to further modification using Staudinger ligation or Huisgen cycloaddition. UDP-6Az-GlcNAc is synthesized from α-benzyl-N-acetylglucosaminoside in seven-steps with an overall yield of 6%.
View Article and Find Full Text PDFThe terpene synthase encoded by the sav76 gene of Streptomyces avermtilis was expressed in Escherichia coli as an N-terminal-His(6)-tag protein, using a codon-optimized synthetic gene. Incubation of the recombinant protein, SAV_76, with farnesyl diphosphate (1, FPP) in the presence of Mg(2+) gave a new sesquiterpene alcohol avermitilol (2), whose structure and stereochemistry were determined by a combination of (1)H, (13)C, COSY, HMQC, HMBC, and NOESY NMR, along with minor amounts of germacrene A (3), germacrene B (4), and viridiflorol (5). The absolute configuration of 2 was assigned by (1)H NMR analysis of the corresponding (R)- and (S)-Mosher esters.
View Article and Find Full Text PDFCampylobacter jejuni and Campylobacter coli are the main causes of bacterial diarrhea worldwide, and Helicobacter pylori is known to cause duodenal ulcers. In all of these pathogenic organisms, the flagellin proteins are heavily glycosylated with a 2-keto-3-deoxy acid, pseudaminic acid (5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid). The presence of pseudaminic acid is required for the proper development of the flagella and is thereby necessary for motility in, and invasion of, the host.
View Article and Find Full Text PDFThis paper reports the first identification of a fully functional hydrolyzing UDP-N-acetylglucosamine 2-epimerase from a bacterial source. The epimerase (known as SiaA or NeuC) from Neisseria meningitidis MC58 group B is shown to catalyze the conversion of UDP-GlcNAc into ManNAc and UDP in the first step of sialic acid (N-acetylneuraminic acid) biosynthesis. The mechanism is proposed to involve an anti elimination of UDP to form 2-acetamidoglucal as an intermediate, followed by the syn addition of water.
View Article and Find Full Text PDFThe bifunctional enzyme, UDP-N-acetylglucosamine 2-epimerase/ManNAc kinase, catalyzes the first two steps in the biosynthesis of the sialic acids in mammals. The epimerase domain converts UDP-GlcNAc into ManNAc and UDP. This paper demonstrates that alpha-ManNAc is the first formed anomer and therefore the reaction proceeds with a net retention of configuration at C-1.
View Article and Find Full Text PDF