Publications by authors named "Wayne Jackson"

Deregulation of the cyclin-dependent kinases (CDKs) has been implicated in the pathogenesis of multiple cancer types. Consequently, CDKs have garnered intense interest as therapeutic targets for the treatment of cancer. We describe herein the molecular and cellular effects of CCT068127, a novel inhibitor of CDK2 and CDK9.

View Article and Find Full Text PDF

The cyclin-dependent kinase (CDK) inhibitor seliciclib (1, CYC202) is in phase II clinical development for the treatment of cancer. Here we describe the synthesis of novel purines with greater solubility, lower metabolic clearance, and enhanced potency versus CDKs. These compounds exhibit novel selectivity profiles versus CDK isoforms.

View Article and Find Full Text PDF

The main difficulty in the development of ATP antagonist kinase inhibitors is target specificity, since the ATP-binding motif is present in many proteins. We introduce a strategy that has allowed us to identify compounds from a kinase inhibitor library that block the cyclin-dependent kinases responsible for regulating transcription, i.e.

View Article and Find Full Text PDF

Through cell-based screening of our kinase-directed compound collection, we discovered that a subset of N-phenyl-4-(thiazol-5-yl)pyrimidin-2-amines were potent cytotoxic agents against cancer cell lines, suppressed mitotic histone H3 phosphorylation, and caused aberrant mitotic phenotypes. It was subsequently established that these compounds were in fact potent inhibitors of aurora A and B kinases. It was shown that potency and selectivity of aurora kinase inhibition correlated with the presence of a substituent at the aniline para-position in these compounds.

View Article and Find Full Text PDF

Following the recent discovery and development of 2-anilino-4-(thiazol-5-yl)pyrimidine cyclin dependent kinase (CDK) inhibitors, a program was initiated to evaluate related ring-constrained analogues, specifically, 2-methyl- and 2-amino-N-aryl-4,5-dihydrothiazolo[4,5-h]quinazolin-8-amines for inhibition of CDKs. Here we report the rational design, synthesis, structure-activity relationships (SARs), and cellular mode-of-action profile of these second generation CDK inhibitors. Many of the analogues from this chemical series inhibit CDKs with very low nanomolar K(i) values.

View Article and Find Full Text PDF

A series of 2-anilino-4-(1H-pyrrol-3-yl)pyrimidines were prepared and evaluated for their ability to inhibit cyclin-dependent kinases (CDKs). A number of analogues were found to be potent CDK2 and CDK4 inhibitors and to exhibit anti-proliferative activity against human tumour cell lines. Structure-activity relationships and biochemical characterization are presented.

View Article and Find Full Text PDF

A number of selective inhibitors of the CDK4/cyclin D1 complex have been reported recently. Due to the absence of an experimental CDK4 structure, the ligand and protein determinants contributing to CDK4 selectivity are poorly understood at present. Here, we report the use of computational methods to elucidate the characteristics of selectivity and to derive the structural basis for specific, high-affinity binding of inhibitors to the CDK4 active site.

View Article and Find Full Text PDF

Following the identification through virtual screening of 4-(2,4-dimethyl-thiazol-5-yl)pyrimidin-2-ylamines as moderately potent inhibitors of cyclin-dependent kinase-2 (CDK2), a CDK inhibitor analogue program was initiated. The first aims were to optimize potency and to evaluate the cellular mode of action of lead candidate molecules. Here the synthetic chemistry, the structure-guided design approach, and the structure-activity relationships (SARs) that led to the discovery of 2-anilino-4-(thiazol-5-yl)pyrimidine ATP-antagonistic CDK2 inhibitors, many with very low nM K(i)s against CDK2, are reported.

View Article and Find Full Text PDF

The phosphorylation of the cardiac muscle isoform of the sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA2a) on serine 38 has been described as a regulatory event capable of very significant enhancement of enzyme activity (Hawkins, C., Xu, A., and Narayanan, N.

View Article and Find Full Text PDF