Publications by authors named "Wayne J Parker"

This study examined the impact of using different analytical recovery practices to correct MP concentrations on the performance of count and mass balances of primary wastewater settling. Spiking tests using standard MPs were conducted to evaluate the influence of MP size and sample type on recovery. The derived recovery values were then used to correct MP concentrations and loads in a full-scale primary treatment facility.

View Article and Find Full Text PDF

This study evaluated the influence of organic matter (OM) constituents on the potential for recovery of P from wastewaters when FeCl treatment is employed for P removal. The presence of OM constituents did not influence P release from Fe-P sludges when alkaline and ascorbic acid treatments were employed. However, the overall recovery of P from wastewater was impacted by the presence of selected OM constituents through the reduction of P uptake during coagulation.

View Article and Find Full Text PDF

This work assessed the performance of a pilot-scale cascade anaerobic digestion (AD) system when treating mixed municipal wastewater treatment sludges. The cascade system was compared with a conventional continuous stirred tank reactor (CSTR) digester (control) in terms of process performance, stability, and digestate quality. The results showed that the cascade system achieved higher volatile solids removal (VSR) efficiencies (28-48%) than that of the reference (25-41%) when operated at the same solids residence time (SRT) in the range of 11-15 days.

View Article and Find Full Text PDF

Wastewater treatment plants (WWTPs) serve a pivotal role in transferring microplastics (MPs) from wastewater to sludge streams, thereby exerting a significant influence on their release into the environment and establishing wastewater and biosolids as vectors for MP transport and delivery. Hence, an accurate understanding of the fate and transport of MPs in WWTPs is vital. Enumeration is commonly used to estimate concentrations of MPs in performance evaluations of treatment processes, and risk assessment also typically involves MP enumeration.

View Article and Find Full Text PDF

A comprehensive floc model for simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) was designed, incorporating polyphosphate-accumulating organisms (PAOs), glycogen-accumulating organisms (GAOs), intrinsic half-saturation coefficients, and explicit external mass transfer terms. The calibrated model was able to effectively describe experimental data over a range of operating conditions. The estimated intrinsic half-saturation coefficients of oxygen values for ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, ordinary heterotrophic organisms (OHOs), PAOs, and GAOs were set at 0.

View Article and Find Full Text PDF

Polybrominated diphenyl ethers (PBDE) are priority contaminants historically used as flame retardants. PBDEs are known to occur in wastewater biosolids posing potential concerns with the beneficial land application of the biosolids. This study evaluated the removal of 21 congeners in nine full-scale sludge treatment systems including pelletization (P), alkaline stabilization (AS), and aerobic (AE) and anaerobic (AN) digestion.

View Article and Find Full Text PDF

Building-level wastewater-based surveillance (WBS) has been increasingly applied upstream from wastewater treatment plants to conduct targeted monitoring for SARS-CoV-2. In this study, a two-tiered, trigger-based wastewater surveillance program was developed on a university campus to monitor dormitory wastewater. The objective was to determine if passive sampling with cotton gauze as a sampling medium could be used to support institution-level public health action.

View Article and Find Full Text PDF

This study describes a novel application of the use of molecular modeling tools for investigating the adsorption of organic micropollutants (OMPs) from water by nanocomposites. The partitioning of pharmaceuticals onto β-Cyclodextrin (β-CD) functionalized adsorbents was investigated at the molecular level to explore the atomistic interactions of pharmaceutical contaminants in water systems with β-CD and to provide insight into possible approaches for removal of pharmaceuticals from water. Molecular electrostatic surface potential mapping of β-CD derivatives was employed to examine the impact of substitution degree of β-CD and type of grafting agent on host-guest complexation.

View Article and Find Full Text PDF

Chemically mediated recovery of phosphorous (P) as vivianite from the sludges generated by chemical phosphorus removal (CPR) is a potential means of enhancing sustainability of wastewater treatment. This study marks an initial attempt to explore direct P release and recovery from lab synthetic Fe-P sludge via reductive dissolution using ascorbic acid (AA) under acidic conditions. The effects of AA/Fe molar ratio, age of Fe-P sludge and pH were examined to find the optimum conditions for Fe-P reductive solubilization and vivianite precipitation.

View Article and Find Full Text PDF

The presence of organic micropollutants in water is an ongoing concern due to the potential risks to living organisms. β-Cyclodextrin-based adsorbents have been developed to remove organic micropollutants from water as they are deemed to be efficient, selective and reusable. This literature review establishes the current state of the knowledge on the application of β-Cyclodextrin adsorbents for the removal of organic micropollutants from water and determines knowledge gaps and recommendations for future studies.

View Article and Find Full Text PDF

A lab-scale sequencing batch reactor was employed to study simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) when treating municipal wastewater at 10 °C for 158 days. An anaerobic/aerobic configuration that had previously been effective when treating synthetic wastewater was explored, however, these conditions were relatively ineffective for real municipal wastewater. Incorporation of a post-anoxic phase (i.

View Article and Find Full Text PDF

Nitrogen removal pathways of simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) at low dissolved oxygen (0.3 mg/L) and temperature (10℃) were explored to understand nitrogen removal mechanisms. Biological nitrogen and phosphorus removal was sustained with total inorganic nitrogen removal, phosphorus removal, and simultaneous nitrification and denitrification (SND) efficiencies of 62.

View Article and Find Full Text PDF

Poly- and per-fluoroalkyl substances (PFAS) are an emerging class of anthropogenic contaminants whose occurrence has raised concerns with the beneficial reuse of biosolids from wastewater treatment. This study evaluated the behavior of thirteen PFAS in nine Canadian sludge treatment systems including pelletization, alkaline stabilization, aerobic and anaerobic digestion processes. The composition of the overall PFAS-fluorine (ΣPFAS-F) loading in a system fed with only primary sludge was dominated by perfluorodecanoate (PFDA), whereas systems with blended primary and waste activated sludge feeds had a mix of short and long chain PFAS in raw sludges and treated biosolids.

View Article and Find Full Text PDF

Non-reactive phosphorus (nRP) contains condensed phosphates and organic phosphorus (OP) species that are recalcitrant in secondary wastewater treatment and tend to remain in final effluents. To meet ultra-low effluent P discharge limits, persistent nRP must be removed. The objective of this study was to evaluate the use of an advanced oxidation process (AOP) which couples TiO/UV photolysis with ultrafiltration to oxidize and remove nRP species.

View Article and Find Full Text PDF

This study sought to identify factors responsible for enhanced fouling of ultrafiltration membranes used in tertiary wastewater treatment under challenging conditions of high flow and low temperature. A detailed analysis of full-scale membrane operating data was conducted, and this was supported by data gathered through a field sampling campaign. Higher average fouling rates and average recoveries were observed during periods of highest flows and lowest temperatures.

View Article and Find Full Text PDF

Nitrification, the oxidation of ammonia to nitrate via nitrite, is an important process in municipal wastewater treatment plants (WWTPs). Members of the Nitrospira genus that contribute to complete ammonia oxidation (comammox) have only recently been discovered and their relevance to engineered water treatment systems is poorly understood. This study investigated distributions of Nitrospira, ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB) in biofilm samples collected from tertiary rotating biological contactors (RBCs) of a municipal WWTP in Guelph, Ontario, Canada.

View Article and Find Full Text PDF

Anaerobically digested biosolids (ABD) characteristics that affect dewatering were assessed at three water resource recovery facilities (WRRF) with different handling practices. Dewatering performance at the three sites corresponded to different levels of soluble chemical oxygen demand (COD), ammonia (NH -N), and mono- and divalent cation concentrations in ADB. Capillary suction time (CST) and a modified centrifugal technique were used to determine optimum polymer doses and to assess the impact of handling conditions on dewatering performance.

View Article and Find Full Text PDF

The impact of solids residence time (SRT) on the dynamics of phosphorus (P) removal by hydrous ferric oxide (HFO) floc was characterized through experimental and modeling studies. Three abiotic process conditions were considered in systems operated over a range of SRTs (~3 to 27 days): uptake in sequencing batch reactors (SBRs) under (a) constant and (b) dynamic P loading conditions, and (c) uptake in batch sorption tests with preformed HFO solids. P removal under all conditions was characterized by an initial period of fast removal followed by a period of slower removal until pseudo-equilibrium was reached.

View Article and Find Full Text PDF

Thyroid hormones (THs) regulate vertebrate growth, development, and metabolism. Despite their importance, there is a need for effective detection of TH-disruption by endocrine disrupting chemicals (EDCs). The frog olfactory system substantially remodels during TH-dependent metamorphosis and the objective of the present study is to examine olfactory system gene expression for TH biomarkers that can evaluate the biological effects of complex mixtures such as municipal wastewater.

View Article and Find Full Text PDF

A pilot scale biological nutrient removal (BNR) process, batch experiments and modeling exercises were employed to investigate the removal and biotransformation of trimethoprim (TMP) in a BNR activated sludge process. The concentrations of the active microbial groups - ammonia oxidizing bacteria (AOB), ordinary heterotrophic organisms (OHOs) and polyphosphate accumulating organisms (PAOs) - in the BNR bioreactor were quantified through modeling of the pilot bioreactor. The overall TMP removal efficiency for the pilot BNR process was 64 ± 14% while the TMP biotransformation efficiencies in the anaerobic, anoxic and aerobic zones were 22 ± 20%, 27 ± 8% and 36 ± 5% respectively.

View Article and Find Full Text PDF

Decades of studies on endocrine disruption have suggested the need to manage the release of key estrogens from municipal wastewater treatment plants (WWTP). However, the proposed thresholds are below the detection limits of most routine chemical analysis, thereby restricting the ability of watershed managers to assess the environmental exposure appropriately. In this study, we demonstrated the utility of a mechanistic model to address the data gaps on estrogen exposure.

View Article and Find Full Text PDF

  The hydrolysis of mixed primary and secondary sludges in two-stage anaerobic digestion was evaluated and compared with conventional single-stage digestion, using various temperature-phased configurations of M1-M2, M1-T3, T1-T2, and T1-M3. A dual hydrolysis model best described the hydrolysis in all tests. This model was also able to consistently estimate the readily and slowly fractions of particulate chemical oxygen demand (COD) of raw sludge used in the tests.

View Article and Find Full Text PDF

Olfaction is critical for survival, facilitating predator avoidance and food location. The nature of the olfactory system changes during amphibian metamorphosis as the aquatic herbivorous tadpole transitions to a terrestrial, carnivorous frog. Metamorphosis is principally dependent on the action of thyroid hormones (THs), l-thyroxine (T) and 3,5,3'-triiodothyronine (T), yet little is known about their influence on olfaction during this phase of postembryonic development.

View Article and Find Full Text PDF

In this study, the estrogenicity of two major wastewater treatment plant (WWTP) effluents located in the central reaches of the Grand River watershed in southern Ontario was estimated using population demographics, excretion rates, and treatment plant-specific removals. Due to the lack of data on estrogen concentrations from direct measurements at WWTPs, the treatment efficiencies through the plants were estimated using the information obtained from an effects-directed analysis. The results show that this approach could effectively estimate the estrogenicity of WWTP effluents, both before and after major infrastructure upgrades were made at the Kitchener WWTP.

View Article and Find Full Text PDF

  The effect of solids residence time (SRT) on steady state phosphorus (P) removal when striving for ultralow concentrations through metal salt addition was studied. Lab-scale continuous flow sequencing batch reactors (SBRs) were operated under high (6.4 mg P/L; 1.

View Article and Find Full Text PDF