Publications by authors named "Wayne J Harrison"

Polymers of Intrinsic Microporosity (PIMs) of high performance have developed as materials with a wide application range in gas separation and other energy-related fields. Further optimization and long-term behavior of devices with PIMs require an understanding of the structure-property relationships, including physical aging. In this context, the glass transition plays a central role, but with conventional thermal analysis a glass transition is usually not detectable for PIMs before their thermal decomposition.

View Article and Find Full Text PDF

Polymers with intrinsic microporosity (PIMs) represent a novel, innovative class of materials with great potential in various applications from high-performance gas-separation membranes to electronic devices. Here, for the first time, for PIM-1, as the archetypal PIM, fast scanning calorimetry provides definitive evidence of a glass transition ( T = 715 K, heating rate 3 × 10 K/s) by decoupling the time scales responsible for glass transition and decomposition. Because the rigid molecular structure of PIM-1 prevents any conformational changes, small-scale bend and flex fluctuations must be considered the origin of its glass transition.

View Article and Find Full Text PDF

The increasing demand for energy efficient separation processes fosters the development of new high performance polymers as selective separation layers for membranes. PIM-1 is the archetypal representative of the class of polymers of intrinsic microporosity (PIM) which are considered most promising in this sector, especially for gas separations. Since their introduction, PIMs stimulated a vast amount of research in this field and meanwhile evolved to the state-of-the-art in membrane technology for gas separation.

View Article and Find Full Text PDF

Gas permeability data are presented for mixed matrix membranes (MMMs) of few-layer graphene in the polymer of intrinsic microporosity PIM-1, and the results compared with previously reported data for two other nanofillers in PIM-1: multiwalled carbon nanotubes functionalized with poly(ethylene glycol) (f-MWCNTs) and fused silica. For few-layer graphene, a significant enhancement in permeability is observed at very low graphene content (0.05 vol.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the micellization and gelation behavior of a 50/50 mixture of triblock copolymers (E45B14E45 and E62P39E62) in dilute aqueous solutions across various temperatures.
  • Light scattering measurements indicate that the two copolymers micellize separately within the mixture, leading to the formation of a hard gel when micellization is extensive for both.
  • The minimum concentration needed for hard-gel formation is higher in the mixture compared to individual copolymers due to the presence of micelles with different average sizes.
View Article and Find Full Text PDF