Publications by authors named "Wayne D Comper"

The fractional clearance of proteins as measured in healthy human subjects increases 10,000-100,000- fold when studied in nephrotic patients. This remarkable increase cannot be accounted for by extracellular biophysical mechanisms centered at the glomerular filtration barrier. Rather, it is the nephron and its combination of filtration and cellular uptake that can provide a plausible explanation of these fractional clearance changes.

View Article and Find Full Text PDF

Background: The most vexing problem in hyponatremic conditions is to differentiate the syndrome of inappropriate secretion of antidiuretic hormone (SIADH) from cerebral/renal salt wasting (C-RSW). Both have identical clinical parameters but diametrically opposite therapeutic goals of water- restricting water-logged patients with SIADH or administering salt and water to dehydrated patients with C-RSW. While C-RSW is considered a rare condition, the report of a high prevalence of C-RSW in the general hospital wards creates an urgency to differentiate one syndrome from the other on first encounter.

View Article and Find Full Text PDF

Purpose: The analysis of exosome/microvesicle (extracellular vesicles (EVs)) and the RNA packaged within them (exoRNA) has the potential to provide a non-invasive platform to detect and monitor disease related gene expression potentially in lieu of more invasive procedures such as biopsy. However, few studies have tested the diagnostic potential of EV analysis in humans.

Experimental Design: The ability of EV analysis to accurately reflect prostate tissue mRNA expression was examined by comparing urinary EV TMPRSS2:ERG exoRNA from pre-radical prostatectomy (RP) patients versus corresponding RP tissue in 21 patients.

View Article and Find Full Text PDF

Inhibition of the degradation of filtered albumin has been proposed as a widespread, benign form of albuminuria. There have however been recent reports that radiolabeled albumin fragments in urine are not exclusively generated by the kidney and that in albuminuric states albumin fragment excretion is not inhibited. In order to resolve this controversy we have examined the fate of various radiolabeled low molecular weight protein degradation products (LMWDPs) introduced into the circulation in rats.

View Article and Find Full Text PDF

Albuminuria in nephrotic states is thought to arise from the formation of large pores in the glomerular capillary wall as large hydrodynamic probes, like Ficoll, have increased fractional clearance. In the present study, we tested for large pore formation in a novel manner. We accounted for the rates of plasma elimination as determined for tritium-labeled tracers of uncharged polydisperse Ficoll (radii range: 35-85 Å) and two globular (14)C-labeled proteins, albumin (radius: 36 Å) and IgG (radius: 55 Å), in control and puromycin aminonucleoside nephrotic (PAN) Sprague-Dawley rats.

View Article and Find Full Text PDF

For over 50 years, the glomerular filter has been thought to exert an uniquely significant barrier to the transport of albumin. The glomerular endothelial cell glycocalyx is considered to contribute to this important barrier restriction. In renal disease, structural alterations to this layer have been associated with albuminuria.

View Article and Find Full Text PDF

Here we address the assumption that the massive intact albuminuria accompanying mutations of structural components of the slit diaphragm is due to changes in glomerular permeability. The increase in intact albumin excretion rate in Cd2ap knockout mice by >100-fold was not accompanied by equivalent changes in urine flow rate, glomerular filtration rate or increases in dextran plasma clearance rate, which demonstrates that changes in glomerular permeability alone could not account for the increase in intact albumin excretion. The albuminuria could be accounted for by inhibition of the tubule degradation pathway associated with degrading filtered albumin.

View Article and Find Full Text PDF

Purpose Of Review: There is currently a major debate on the mechanisms of albuminuria, and this review appraises recent studies in this area.

Recent Findings: The traditional view of albuminuria is that it is the result of damage to an essentially impermeable glomerular barrier. However, over the years, critical evidence for this traditional model has been shown to be flawed.

View Article and Find Full Text PDF

Understanding the pathogenesis of albuminuria in diabetic nephropathy is important to improve methods for early diagnosis and treatment. In this study, we addressed whether albuminuria in diabetes results from altered glomerular filtration and/or altered processing of filtered albumin by the proximal tubule. Type 1 diabetic Munich Wistar rats developed albuminuria after 12 wk of diabetes.

View Article and Find Full Text PDF

Background: Recent studies suggest that expression of the transforming growth factor-beta (TGF-beta)-inducible gene-h3 (betaig-h3) and its anti-lysosomal activity may be responsible for the development of albuminuria and cardiovascular disease associated with hypertension.

Methods: We evaluated the proposed linkage using the spontaneously hypertensive rat (SHR) and Wistar-Kyoto rat models. The kidney and left ventricular weight/body weight ratios were measured and cardiac collagen deposition was analyzed by Masson's trichrome stain.

View Article and Find Full Text PDF

The classic mechanism to explain albumin excretion in diabetes has been permeability defects in the glomerular filter. However, a new concept has emerged that albuminuria can be explained by the two major pathways the proximal tubular cell uses to process filtered albumin. Specifically, albumin permeability through the glomerular filter is only governed by size selectivity.

View Article and Find Full Text PDF

The mechanism of albuminuria is perhaps one of the most complex yet important questions in renal physiology today. Recent studies have directly demonstrated that the normal glomerulus filters substantial amounts of albumin and that charge selectivity plays little or no role in preventing this process. This filtered albumin is then processed by proximal tubular cells by two distinct pathways; dysfunction in either one of these pathways gives rise to discrete forms of albuminuria.

View Article and Find Full Text PDF

The glomerular filtration barrier has long been thought largely impermeable to albumin. Startling new data suggest it may not be especially important in this process. Much of the argument hinges on whether charge selectivity really exists, how feasible it is for enormous quantities of albumin to instead be reclaimed by the proximal tubule, and the technical merits of previous experiments.

View Article and Find Full Text PDF

This study examines the existence of the urinary albumin degradation pathway and the proposed role of receptor-mediated endocytosis in this process using the isolated perfused rat kidney (IPK) model. Albumin-derived peptides in IPK urine are analyzed in terms of their relative size distribution using radioactivity and absorbance at 214 nm, and their susceptibility to trypsin digestion. The effects of perfusing kidneys with concanamycin A and myristoyl trimethyl ammonium bromide (MTMAB), inhibitors of the receptor-mediated endocytosis regulators vacuolar-type H(+) ATPase (v-ATPase) and dynamin GTPase, respectively, are examined.

View Article and Find Full Text PDF

Objectives: To compare the analysis of different forms of intact albumin in urine from healthy volunteers. To determine contamination by common non-albumin proteins on HPLC analysis of urinary albumin and of purified immuno-unreactive albumin.

Design And Methods: Overnight urine samples collected from healthy volunteers were analysed for total albumin (immunoreactive plus immuno-unreactive) by HPLC and densitometry following native PAGE separation and for immunoreactive albumin by RIA.

View Article and Find Full Text PDF

Large quantities of peptides (1-4 g) are excreted in human urine each day. In this study we sought to analyze how peptide excretion varies with increasing albuminuria associated with diabetes, as well as to characterize the size distribution of albumin-derived peptides in urine from volunteers without diabetes and from patients with macroalbuminuria and diabetes. We detected albumin-derived peptides by injecting tritiated albumin intravenously into human volunteers and patients with diabetes.

View Article and Find Full Text PDF

Microalbuminuria is an important clinical marker in patients with diabetes and cardiovascular disease. The concentration of albumin in urine has traditionally been measured by semiquantitative dipsticks or by various quantitative immunochemical methods such as immunonephelometry, immunoturbidimetry, and radioimmunoassay. However, until recently, urinary albumin not reabsorbed by proximal tubular cells was assumed to be excreted intact.

View Article and Find Full Text PDF

Normal albumin loss from the plasma is thought to be minimized by a number of mechanisms, including charge repulsion with the capillary wall and an intracellular rescue pathway involving the major histocompatibility complex-related Fc receptor (FcRn)-mediated mechanism. This study investigates how these factors may influence the mechanism of hypoalbuminemia. Hypoalbuminemia in rats was induced by treatment with puromycin aminonucleoside (PA).

View Article and Find Full Text PDF