The heterocyclic 2-Aminothiazoles scaffolds are used in a wide range of therapeutic applications against various diseases for its antioxidant, anti-inflammatory, antimicrobial and anticancer actions. In the present study, we synthesized novel aniline aromatic ring-substituted 2-Aminothiazole derivatives. Molecular docking was performed using Glide module of the Schrödinger Suite to fit compounds JG-49, JG-62, and KBA-18 against the Nicotinamide phosphoribosyl transferase (Nampt) enzyme, an intracellular regulator of Nicotinamide adenine dinucleotide (NAD) redox cofactor involved in energy metabolism and epigenetics and are implicated in aging and metabolic diseases.
View Article and Find Full Text PDFHYD1 is an all D-amino acid linear 10-mer peptide that was discovered by one-bead-one-compound screening. HYD1 has five hydrophobic amino acids flanked by polar amino acids. Alanine scanning studies showed that alternating hydrophobic amino acid residues and N- and C-terminal lysine side chains were contributors to the biological activity of the linear 10-mer analogs.
View Article and Find Full Text PDFApoB lipoproteins (apo B-Lp) are produced in hepatocytes, and their secretion requires the cargo receptor sortilin. We examined the secretion of apo B-Lp-containing very low-density lipoprotein (VLDL), an LDL progenitor. Sortilin also regulates the trafficking of the subtilase PCSK9, which when secreted binds the LDL receptor (LDLR), resulting in its endocytosis and destruction at the lysosome.
View Article and Find Full Text PDFThe homeostasis of most organelles requires membrane fusion mediated by oluble -ethylmaleimide-sensitive factor (NSF) ttachment protein ceptors (SNAREs). SNAREs undergo cycles of activation and deactivation as membranes move through the fusion cycle. At the top of the cycle, inactive -SNARE complexes on a single membrane are activated, or primed, by the hexameric ATPase associated with the diverse cellular activities (AAA+) protein, -ethylmaleimide-sensitive factor (NSF/Sec18), and its co-chaperone α-SNAP/Sec17.
View Article and Find Full Text PDFBiochem Mol Biol J
January 2018
The non-mevalonate dependent (NMVA) pathway for the biosynthesis of isopentenyl pyrophosphate and dimethylallyl pyrophosphate is the sole source of these terpenoids for the production of isoprenoids in the apicomplexan parasites, in many eubacteria, and in plants. The absence of this pathway in higher organisms has opened a new platform for the development of novel antibiotics and anti-malarials. The enzyme catalyzing the first step of the NMVA pathway is 1-deoxy-D-xylulose-5-phosphate synthase (DXPS).
View Article and Find Full Text PDFCalcium is involved in important intracellular processes, such as intracellular signaling from cell membrane receptors to the nucleus. Typically, calcium levels are kept at less than 100 nM in the nucleus and cytosol, but some calcium is stored in the endoplasmic reticulum (ER) lumen for rapid release to activate intracellular calcium-dependent functions. Stromal interacting molecule 1 (STIM1) plays a critical role in early sensing of changes in the ER's calcium level, especially when there is a sudden release of stored calcium from the ER.
View Article and Find Full Text PDFSortilin is a multi-ligand sorting receptor that interacts with B100-containing VLDL and LDL as well as other ligands including neurotensin (NT). The current study investigates the hypothesis that phosphatidylinositol (3,4,5)-trisphosphate (PIP3) generated downstream of insulin action can directly bind to sortilin. NT binds to sortilin at a well characterized site via its carboxy terminus (C-term).
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2016
Studies examining the relationship between cellular sortilin and VLDL-B100 secretion demonstrate inconsistent results. Current studies explore the possibility that discrepancies may be related to insulin sensitivity. McArdle RH7777 cells (McA cells) cultured under serum enriched conditions lose sensitivity to insulin.
View Article and Find Full Text PDFIt has been found that tumor cells and tissues, compared to normal cells, have higher levels of copper and possibly other metal ions. This presents a potential vulnerability of tumor cells that can serve as a physiological difference between cancer cells and normal cells and allows design of compounds that selectively target tumor cells while sparing normal cells. Recently we have identified compounds that have potential to inhibit the proteasome in tumor cells and induce cell death by mobilizing endogenous tumor copper resulting in in cellulo activation of the compound.
View Article and Find Full Text PDFShort peptides featuring a tetrahydropyridazinedione (tpd) backbone tether exhibit reduced conformational flexibility external to the heterocyclic constraint. Analysis by NMR, molecular modeling and X-ray crystallography suggests both covalent and non-covalent stabilization of extended peptide conformations. An efficient solid-phase protocol was developed for the synthesis of a new class of β-strand mimics based on oligomeric tpd subunits.
View Article and Find Full Text PDFComput Struct Biotechnol J
February 2015
Ion channels represent a large family of membrane proteins with many being well established targets in pharmacotherapy. The 'druggability' of heteromeric channels comprised of different subunits remains obscure, due largely to a lack of channel-specific probes necessary to delineate their therapeutic potential in vivo. Our initial studies reported here, investigated the family of inwardly rectifying potassium (Kir) channels given the availability of high resolution crystal structures for the eukaryotic constitutively active Kir2.
View Article and Find Full Text PDFThe continued proliferation of malaria throughout temperate and tropical regions of the world has promoted a push for more efficacious treatments to combat the disease. Unfortunately, more recent remedies such as artemisinin combination therapies have been rendered less effective due to developing parasite resistance, and new drugs are required that target the parasite in the liver to support the disease elimination efforts. Research was initiated to revisit antimalarials developed in the 1940s and 1960s that were deemed unsuitable for use as therapeutic agents as a result of poor understanding of both physicochemical properties and parasitology.
View Article and Find Full Text PDFPlasmodium falciparum, the causative agent of malaria, contributes to significant morbidity and mortality worldwide. Forward genetic analysis of the blood-stage asexual cycle identified the putative phosphatase from PF3D7_1305500 as an important element of intraerythrocytic development expressed throughout the life cycle. Our preliminary evaluation identified it as an atypical mitogen-activated protein kinase phosphatase.
View Article and Find Full Text PDFThe -tosylsalicylamide () was used as a starting point for design and synthesis of novel STAT-3 dimerization inhibitors with improved drug-like qualities. The phosphonic acid and salicylic acids , with a shorter amide linker lacking the -tosyl group had improved STAT-3 inhibitory activity. The equivalent potencies observed by the replacement of phosphonic acid moiety of with 5-amino-2-hydroxybenzoic acid group as in further validates 5-amino-2-hydroxybenzoic acid as a phosphotyrosine mimic.
View Article and Find Full Text PDFHumanity is burdened by malaria as millions are infected with this disease. Although advancements have been made in the treatment of malaria, optimism regarding our fight against malaria must be tempered against the problem of drug resistance in the Plasmodium parasites causing malaria. New targets are required to overcome the resistance problem.
View Article and Find Full Text PDFFabH (Fatty acid biosynthesis, enzyme H, also referred to as β-ketoacyl-ACP-synthase III) is a key condensing enzyme in the type II fatty acid synthesis (FAS) system. The FAS pathway in bacteria is essential for growth and survival and vastly differs from the human FAS pathway. Enzymes involved in this pathway have arisen as promising biomolecular targets for discovery of new antibacterial drugs.
View Article and Find Full Text PDFScreening of the 50000 ChemBridge compound library led to the identification of the oxadiazole-isopropylamide 1 (PI-1833) which inhibited chymotrypsin-like (CT-L) activity (IC50 = 0.60 μM) with little effects on the other two major proteasome proteolytic activities, trypsin-like (T-L) and postglutamyl-peptide-hydrolysis-like (PGPH-L). LC-MS/MS and dialysis show that 1 is a noncovalent and rapidly reversible CT-L inhibitor.
View Article and Find Full Text PDFSTAT3-STAT3 dimerization, which involves reciprocal binding of the STAT3-SH2 domain to phosphorylated tyrosine-705 (Y-705), is required for STAT3 nuclear translocation, DNA binding, and transcriptional regulation of downstream target genes. Here, we describe a small molecule S3I-1757 capable of disrupting STAT3-STAT3 dimerization, activation, and malignant transforming activity. Fluorescence polarization assay and molecular modeling suggest that S3I-1757 interacts with the phospho-Y-705-binding site in the SH2 domain and displaces fluorescein-labeled GpYLPQTV phosphotyrosine peptide from binding to STAT3.
View Article and Find Full Text PDFPotent ROCK inhibitors of a new class of 1-benzyl-3-(4-pyridylthiazol-2-yl)ureas have been identified. Remarkable differences in activity were observed for ureas bearing a benzylic stereogenic center. Derivatives with hydroxy, methoxy and amino groups at the meta position of the phenyl ring give rise to the most potent inhibitors (low nM).
View Article and Find Full Text PDFComputational methods involving virtual screening could potentially be employed to discover new biomolecular targets for an individual molecule of interest (MOI). However, existing scoring functions may not accurately differentiate proteins to which the MOI binds from a larger set of macromolecules in a protein structural database. An MOI will most likely have varying degrees of predicted binding affinities to many protein targets.
View Article and Find Full Text PDFUsing high concentration biochemical assays and fragment-based screening assisted by structure-guided design, we discovered a novel class of Rho-kinase inhibitors. Compound 18 was equipotent for ROCK1 (IC(50) = 650 nM) and ROCK2 (IC(50) = 670 nM), whereas compound 24 was more selective for ROCK2 (IC(50) = 100 nM) over ROCK1 (IC(50) = 1690 nM). The crystal structure of the compound 18-ROCK1 complex revealed that 18 is a type 1 inhibitor that binds the hinge region in the ATP binding site.
View Article and Find Full Text PDFScreening efforts led to the identification of PI-8182 (1), an inhibitor of the chymotrypsin-like (CT-L) activity of the proteasome. Compound 1 contains a hydronaphthoquinone pharmacophore with a thioglycolic acid side chain at position 2 and thiophene sulfonamide at position 4. An efficient synthetic route to the hydronaphthoquinone sulfonamide scaffold was developed, and compound 1 was synthesized in-house to confirm the structure and activity (IC(50) = 3.
View Article and Find Full Text PDFShp2 protein tyrosine phosphate (PTP) is a novel target for anticancer drug discovery. We identified estramustine phosphate as a Shp2 PTP inhibitor from the National Cancer Institute Approved Oncology Drug set. A focused structure-activity relationship study indicated that the 17-phosphate group is required for the Shp2 PTP inhibitor activity of estramustine phosphate.
View Article and Find Full Text PDFScreening of the NCI Diversity Set-1 identified PI-083 (NSC-45382) a proteasome inhibitor selective for cancer over normal cells. Focused libraries of novel compounds based on PI-083 chloronaphthoquinone and sulfonamide moieties were synthesized to gain a better understanding of the structure-activity relationship responsible for chymotrypsin-like proteasome inhibitory activity. This led to the demonstration that the chloronaphthoquinone and the sulfonamide moieties are critical for inhibitory activity.
View Article and Find Full Text PDF