The conventional energy transfer pathway in organic lanthanide complexes is purported to be from the excited singlet state of the chromophore to the triplet state and subsequently directly to the emitting state of the trivalent lanthanide ion. In this work, we found that the energy transfer occurs from the triplet state to the nearest energy level, instead of directly to the emitting state of the lanthanide ion. The triplet decay rate for different lanthanide ions follows an energy gap law from the triplet level to the receiving level of the lanthanide ion.
View Article and Find Full Text PDFCyclen-peptide bioconjugates are usually prepared in multiple steps that require individual preparation and purification of the cyclic peptide and hydrophilic cyclen derivatives. An efficient strategy is discovered for peptide cyclization and functionalization toward lanthanide probe via three components intermolecular crosslinking on solid-phase peptide synthesis with high conversion yield. Multifunctionality can be conferred by introducing different modular parts or/and metal ions on the cyclen-embedded cyclopeptide.
View Article and Find Full Text PDFMn complexes of 2,4-pyridyl-disubstituted bispidine ligands have emerged as more biocompatible alternatives to Gd -based MRI probes. They display relaxivities comparable to that of commercial contrast agents and high kinetic inertness, unprecedented for Mn complexes. The chemical structure, in particular the substituents on the two macrocyclic nitrogens N3 and N7, are decisive for the conformation of the Mn complexes, and this will in turn determine their thermodynamic, kinetic and relaxation properties.
View Article and Find Full Text PDFCorroles have attracted increasing research interests in recent decades owing to their unique properties over porphyrins. However, the relatively inefficient and tedious synthetic procedures of corrole building blocks with functional groups for bioconjugation hindered their bioapplications. Herein, we report a highly efficient protocol to synthesize corrole-peptide conjugates with good yields (up to 63 %) without using prepared corrole building blocks.
View Article and Find Full Text PDFThe excitation energy transfer (ET) pathway and mechanism from an organic antenna to a lanthanide ion has been the subject of discussion for many decades. In the case of europium (Eu), it has been suggested that the transfer originates from the ligand singlet state or a triplet state. Taking the lanthanide complex as an example, we have investigated the spectra and luminescence kinetics, mainly at room temperature and 77 K, to acquire the necessary experimental data.
View Article and Find Full Text PDFWe have prepared a hetero-tetrametallic assembly consisting of three ytterbium ions coordinated to a central [Ru(bpm)] (bpm = 2,2'-bipyrimidine) motif. Irradiation into the absorption band of the peripheral ytterbium ions at 980 nm engenders emission of the MLCT state of the central [Ru(bpm)] core at 636 nm, which represents the first example of f → d molecular upconversion (UC). Time-resolved measurements reveal a slow rise of the UC emission, which was modeled with a mathematical treatment of the observed kinetics according to a cooperative photosensitization mechanism using a virtual Yb centered doubly excited state followed by energy transfer to the Ru centered MLCT state.
View Article and Find Full Text PDFMultifunctional porphyrin-peptide conjugates with different propensities for self-assembly into various supramolecular nanoarchitectures play important roles in advanced materials and biomedical research. However, preparing prefunctionalized core porphyrins by traditional low-yielding statistical synthesis and purifying them after peptide ligation through many rounds of HPLC purification is tedious and unsustainable. Herein, we report a novel integrated solid-phase synthetic protocol for the construction of porphyrin moieties from simple aldehydes and dipyrromethanes on resin-bound peptides directly to form mono-, cis/trans-di-, and trivalent porphyrin-peptide conjugates in a highly efficient and controllable manner; moreover, only single final-stage HPLC purification of the products is needed.
View Article and Find Full Text PDFThe effect of temperature upon the lanthanide luminescence lifetime and intensity has been investigated in toluene solution for the complexes (Ln = Eu, Sm, Nd, Yb; Phen = 1,10-phenanthroline; TTA = thenoyltrifluoroacetonate). Thermally excited back-transfer to a charge transfer state was found to occur for Ln = Eu and can be explained by lifetime and intensity back-transfer models. The emission intensity and lifetime were also quenched with increasing temperature for Ln = Sm, and the activation energy for nonradiative decay is similar to that for the thermal population of Sm excited states.
View Article and Find Full Text PDFEmission from the triplet state of an organo-lanthanide complex is observed only when the energy transfer to the lanthanide ion is absent. The triplet state lifetime under cryogenic conditions for organo-lanthanide compounds usually ranges up to tens of milliseconds. The compound LaL1(TTA) reported herein exhibits 77 K phosphorescence observable by the naked eye for up to 30 s.
View Article and Find Full Text PDFSupported by experimental work, wavefunction theory (WFT) calculations and density functional theory (DFT) calculations employing a range of functionals have been performed for two lanthanide complexes to investigate, in gas and solution phases, the representations of frontier orbitals and the orbital transitions between singlet states. The orbital transitions calculated using CASSCF/NEVTP2 served as reference. Functionals with a higher proportion of Hartree-Fock exchange gave better agreement with WFT.
View Article and Find Full Text PDFA lanthanide-based peptide-directed bioprobe (Ln = Eu or Yb) is designed as an impressive example of a small molecule-based dual-functional probe for the EBV oncoprotein LMP1. The peptide (Pra-KAhx-K-LDLALK-FWLY-K-IVMSDKW-K-RrRK) is designed to selectively bind to LMP1 by mimicking its TM1 region during oligomerization in lipid rafts while signal transduction is significantly suppressed. Immunofluorescence imaging and Western blotting results reveal that can effectively inactivate the oncogenic cellular pathway nuclear factor κB (NF-κB) and contribute to a selective cytotoxic effect on LMP1-positive cells.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2021
We introduce a new and highly efficient synthetic protocol towards multifunctional fluorescent cyclopeptides by solid-phase peptide macrocyclization via dipyrrin construction, with full scope of proteinogenic amino acids and different ring sizes. Various bicyclic peptides can be created by dipyrrin-based crosslinking and double dipyrrin-ring formation. The embedded dipyrrin can be either transformed to fluorescent BODIPY and then utilized as cancer-selective targeted protein imaging probe in vitro, or directly employed as a selective metal sensor in aqueous media.
View Article and Find Full Text PDFTraditional fluorescent peptide chemical syntheses hinge on the use of limited fluorescent/dye-taggable unnatural amino acids and entail multiple costly purifications. Here we describe a facile and efficient protocol for construction of dipyrrins on the N-terminus with 20 natural and five unnatural amino acids and the lysine's side chain of selected peptides/peptide drugs through Fmoc-based solid-phase peptide synthesis. The new strategy enables the direct formation of boron-dipyrromethene (BODIPY)-peptide conjugates from simple aldehyde and pyrrole derivatives without pre-functionalization, and only requires a single-time chromatographic purification at the final stage.
View Article and Find Full Text PDFEpstein-Barr nuclear antigen 1 (EBNA1) plays a vital role in the maintenance of the viral genome and is the only viral protein expressed in nearly all forms of Epstein-Barr virus (EBV) latency and EBV-associated diseases, including numerous cancer types. To our knowledge, no specific agent against EBV genes or proteins has been established to target EBV lytic reactivation. Here we report an EBNA1- and Zn-responsive probe (ZRLP) which alone could reactivate the EBV lytic cycle through specific disruption of EBNA1.
View Article and Find Full Text PDFAn oxidative cascade cyclization of β-keto esters has been developed for the construction of the tricyclic picrotoxane motif in a single step, and DFT calculations suggested a possible cationic cyclization mechanism. This cascade cyclization can be operated on a 20 g scale to obtain a 77% total yield of the tricyclic products, which in turn can be converted to versatile intermediates for further elaboration to picrotoxanes and their structurally related compounds.
View Article and Find Full Text PDFPin1 is a unique phosphorylation-dependent peptidyl-prolyl isomerase that regulates diverse subcellular processes and an important potential therapeutic target. Functional mechanisms of Pin1 are complicated because of the two-domain structural organization: the catalytic domain both binds the specific pSer/Thr-Pro motif and catalyzes the cis/trans isomerization, whereas the WW domain can only bind the trans configuration and is speculated to be responsible for substrate-binding specificity. Numerous studies of Pin1 have led to two divergent conclusions on the functional role of the WW domain.
View Article and Find Full Text PDF