Publications by authors named "Wayde N Martens"

Artificial switchable catalysis is a new, rapidly expanding field that offers great potential advantages for both homogeneous and heterogeneous catalytic systems. Light irradiation is widely accepted as the best stimulus to artificial switchable chemical systems. In recent years, tremendous progress has been made in the synthesis and application of photo-switchable catalysts that can control when and where bond formation and dissociation take place in reactant molecules.

View Article and Find Full Text PDF

Catalytic ammoxidation of alcohols into nitriles is an essential reaction in organic synthesis. While highly desirable, conducting the synthesis at room temperature is challenging, using NH as the nitrogen source, O as the oxidant, and a catalyst without noble metals. Herein, we report robust photocatalysts consisting of Fe(III)-modified titanium dioxide (Fe/TiO) for ammoxidation reactions at room temperature utilizing oxygen at atmospheric pressure, NH as the nitrogen source, and NHBr as an additive.

View Article and Find Full Text PDF

Application of inorganic-organic clays (IOCs) for the remediation of hexavalent chromium (Cr (VI)) and the effect of bisphenol-A (BPA) were investigated. IOCs were better adsorbents for the removal of Cr (VI) than organoclay. Solution pH significantly affected the surface charge of IOCs and speciation of Cr in the solution; hence, the adsorption of Cr onto IOCs.

View Article and Find Full Text PDF

Heavy metal pollution of sediments is a growing concern in most parts of the world, and numerous studies focussed on identifying contaminated sediments by using a range of digestion methods and pollution indices to estimate sediment contamination have been described in the literature. The current work provides a critical review of the more commonly used sediment digestion methods and identifies that weak acid digestion is more likely to provide guidance on elements that are likely to be bioavailable than other traditional methods of digestion. This work also reviews common pollution indices and identifies the Nemerow Pollution Index as the most appropriate method for establishing overall sediment quality.

View Article and Find Full Text PDF

Sediment samples were taken from six sampling sites in Bramble Bay, Queensland, Australia between February and November in 2012. They were analysed for a range of heavy metals including Al, Fe, Mn, Ti, Ce, Th, U, V, Cr, Co, Ni, Cu, Zn, As, Cd, Sb, Te, Hg, Tl and Pb. Fraction analysis, Enrichment Factors and Principal Component Analysis-Absolute Principal Component Scores (PCA-APCS) were carried out in order to assess metal pollution, potential bioavailability and source apportionment.

View Article and Find Full Text PDF

Thirteen sites in Deception Bay, Queensland, Australia were sampled three times over a period of 7 months and assessed for contamination by a range of heavy metals, primarily As, Cd, Cr, Cu, Pb and Hg. Fraction analysis, enrichment factors and Principal Components Analysis-Absolute Principal Component Scores (PCA-APCS) analysis were conducted in order to identify the potential bioavailability of these elements of concern and their sources. Hg and Te were identified as the elements of highest enrichment in Deception Bay while marine sediments, shipping and antifouling agents were identified as the sources of the Weak Acid Extractable Metals (WE-M), with antifouling agents showing long residence time for mercury contamination.

View Article and Find Full Text PDF

A series of macro-mesoporous TiO2/Al2O3 nanocomposites with different morphologies were synthesized. The materials were calcined at 723 K and were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), X-ray photoelectron spectroscopy (XPS) and UV-visible spectroscopy (UV-visible). A modified approach was proposed for the synthesis of 1D (fibrous) nanocomposite with higher Ti/Al molar ratio (2:1) at lower temperature (<100°C), which makes it possible to synthesize such materials on industrial scale.

View Article and Find Full Text PDF

Sediment samples from 13 sampling sites in Deception Bay, Australia were analysed for the presence of heavy metals. Enrichment factors, modified contamination indices and Nemerow pollution indices were calculated for each sampling site to determine sediment quality. The results indicate significant pollution of most sites by lead (average enrichment factor (EF) of 13), but there is also enrichment of arsenic (average EF 2.

View Article and Find Full Text PDF

Using a series of partial phase transitions, an effective photocatalyst with fibril morphology was prepared. The catalytic activities of these materials were tested against phenol and herbicide in water. Both H-titanate and TiO(2)-(B) fibres decorated with anatase nanocrystals were studied.

View Article and Find Full Text PDF

The effective removal of pollutants using a thermally and chemically stable substrate that has controllable absorption properties is a goal of water treatment. In this study, the surfaces of thin alumina (γ-Al(2)O(3)) nanofibres were modified by the grafting either of two organosilane agents, 3-chloro-propyl-triethoxysilane (CPTES) and octyl-triethoxysilane (OTES). These modified materials were then trialed as absorbents for the removal of two herbicides, alachlor and imazaquin from water.

View Article and Find Full Text PDF

Sodium niobates doped with different amounts of tantalum (Ta(V)) were prepared via a thermal reaction process. It was found that pure nanofibrils and bar like solids can be obtained when tantalum is introduced into the reaction system. For the well crystallized fibril solids, the Na(+) ions are difficult to exchange, and the radioactive ions such as Sr(2+) and Ra(2+) just deposit on the surface of the fibers during the sorption process, resulting in lower sorption capacity and distribution coefficients (K(d)).

View Article and Find Full Text PDF

Cubic indium hydroxide nanomaterials were obtained by a low-temperature soft-chemical method without any surfactants. The transition of nano-cubic indium hydroxide to cubic indium oxide during dehydroxylation has been studied by infrared emission spectroscopy. The spectra are related to the structure of the materials and the changes in the structure upon thermal treatment.

View Article and Find Full Text PDF

The aggregate structure which occurs in aqueous smectitic suspensions is responsible for poor water clarification, difficulties in sludge dewatering and the unusual rheological behaviour of smectite rich soils. These macroscopic properties are dictated by the 3D structural arrangement of smectite finest fraction within flocculated aggregates. Here, we report results from a relatively new technique, transmission X-ray microscopy (TXM), which makes it possible to investigate the internal structure and 3D tomographic reconstruction of the smectite clay aggregates modified by Al(13) Keggin macro-molecule [Al(13)(O)(4)(OH)(24)(H(2)O)(12)](7+).

View Article and Find Full Text PDF

The presence of selenite or selenate in potable water is a health hazard especially when consumed over a long period of time. Its removal from potable water is of importance. This paper reports technology for the removal of selenite from water through the use of thermally activated layered double hydroxides.

View Article and Find Full Text PDF

Organoclays were synthesized by the ion exchange of cationic surfactants containing single, double and triple alkyl chains for sodium ions in an aqueous suspension of Wyoming Na-montmorillonite. The characterization of organoclays with and without adsorbed phenol was determined by X-ray diffraction, TEM and thermal analysis. Differences in the surfaces and in the interlayer of the mono, di and tri alkyl chain organoclays resulted in differences in the adsorption efficiency for phenol with tri > di > mono >> Na-Mt.

View Article and Find Full Text PDF

The unusual behavior of smectites, the ability to change volume when wetted (swelling) or dried (shrinking), makes soil rich in smectites very unstable and dangerous for the building industry because of the movement of building foundations and poor slope stability. These macroscopic properties are dominated by the structural arrangement of the smectites' finest fraction. Here, we show in three dimensions how the swelling phenomenon in smectite, caused by a combination of hydratation and electrostatic forces, may expand the dry smectite volume not 10-fold, as previously thought, but to more than 1000-fold.

View Article and Find Full Text PDF

Infrared emission and infrared spectroscopy has been used to study a series of selected natural smithsonites from different origins. An intense broad infrared band at 1440 cm(-1) is assigned to the nu3 CO3(2-) antisymmetric stretching vibration. An additional band is resolved at 1335 cm(-1).

View Article and Find Full Text PDF

The growth of boehmite nanostructures at low temperature using a soft chemistry route with and without (PEO) surfactant is presented. Remarkably long boehmite 1D nanotubes/nanofibers were formed within a significantly short time by changing the reaction mechanism of aluminum hydroxide. By using the PEO surfactant as a templating agent, boehmite nanotubes up to 170 nm in length with internal and external diameters of 2-5 and 3-7 nm, respectively, were formed at 100 degrees C.

View Article and Find Full Text PDF

Iron-doped boehmite nanofibers with varying iron contents have been prepared at low temperatures using hydrothermal treatment in the presence of poly(ethylene oxide) surfactant. The resulting nanofibers were characterized by transmission electron microscopy (TEM), X-ray diffraction, energy-dispersive X-ray analysis, and N2 adsorption. TEM images showed that the resulting nanostructures are predominantly nanofibers when the doped iron content is less than 5% (mol/mol); in contrast, nanosheets were formed when iron doping was above 4%.

View Article and Find Full Text PDF

The ability of near infrared reflectance spectroscopy to classify the rosasite group minerals from spectral characteristics is demonstrated. NIR spectroscopy can be regarded as an alternative tool for structure analysis. The spectra show that rosasite group minerals with different cations can be distinguished.

View Article and Find Full Text PDF

Minerals in the rosasite group namely rosasite, glaucosphaerite, kolwezite, mcguinnessite have been studied by a combination of infrared and Raman spectroscopy. The spectral patterns for the minerals rosasite, glaucosphaerite, kolwezite and mcguinnessite are similar to that of malachite implying the molecular structure is similar to malachite. A comparison is made with the spectrum of malachite.

View Article and Find Full Text PDF

The mineral giniite has been synthesised and characterised by XRD, SEM and Raman and infrared spectroscopy. SEM images of the olive-green giniite display a very unusual image of pseudo-spheres with roughened surfaces of around 1-10microm in size. The face to face contact of the spheres suggests that the spheres are colloidal and carry a surface charge.

View Article and Find Full Text PDF

Niobium pentoxide reacts actively with concentrate NaOH solution under hydrothermal conditions at as low as 120 degrees C. The reaction ruptures the corner-sharing of NbO(7) decahedra and NbO(6) octahedra in the reactant Nb(2)O(5), yielding various niobates, and the structure and composition of the niobates depend on the reaction temperature and time. The morphological evolution of the solid products in the reaction at 180 degrees C is monitored via SEM: the fine Nb(2)O(5) powder aggregates first to irregular bars, and then niobate fibers with an aspect ratio of hundreds form.

View Article and Find Full Text PDF

Controlled rate thermal analysis (CRTA) allows the separation of adsorbed and intercalated hydrazine. CRTA displays the presence of three different types of hydrogen-bonded hydrazine in the intercalation complex: (a) The first is adsorbed loosely bonded on the kaolinite structure fully expanded by hydrazine-hydrate and liberated between approx 50 and 70 degrees C (b) The second intercalated hydrazine is lost between approx 70 and 85 degrees C. (c) The third type of intercalated-hydrazine molecule is lost in the 85-130 degrees C range.

View Article and Find Full Text PDF

A model for pseudoboehmite crystallite packing formed during the hydrolysis of trisecbutoxyaluminium is postulated. The model describes platelike crystallites of pseudoboehmite stacked in a sharing edges only configuration. With this type of stacking, the pore sizes detected are approximately equal to the crystallite sizes of the hydrolysates.

View Article and Find Full Text PDF