Publications by authors named "Wawrzczak-Bargiela A"

Benzophenone-3 (BP-3), commonly used as a UV filter in personal care products and as a stabilizer, is an alleged endocrine disruptor with potential neurodevelopmental impacts. Despite its abundance in the environment, the studies on its effect on brain development are scarce, especially in terms of multigenerational impact. In this work, for the first time, we examined neurotoxic and pro-apoptotic effects of BP-3 on mouse brain regions (cerebral cortex and hippocampus) in both the first (F) and second (F) generations after maternal exposure to environmentally relevant BP-3 levels.

View Article and Find Full Text PDF

The pathophysiology of depression is related to the reduced volume of the hippocampus and amygdala and hypertrophy of the nucleus accumbens. The mechanism of these changes is not well understood; however, clinical studies have shown that the administration of the fast-acting antidepressant ketamine reversed the decrease in hippocampus and amygdala volume in depressed patients, and the magnitude of this effect correlated with the reduction in depressive symptoms. In the present study, we attempted to find out whether the psychedelic substance psilocybin affects neurotransmission in the limbic system in comparison to ketamine.

View Article and Find Full Text PDF

2-(4-Bromo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)etanoamine (25B-NBOMe) is a highly selective 5-HT receptor agonist, exhibiting a potent hallucinogenic activity. In the present study, we investigated the effect of a 7-day treatment with 25B-NBOMe in a dose of 0.3 mg/kg on the following: the neurotransmitter release in vivo using microdialysis in freely moving animals, hallucinogenic activity measured in the Wet Dog Shake (WDS) test, anxiety level as measured in the light/dark box (LDB) and locomotor activity in the open field (OF) test, DNA damage with the comet assay, and on a number of neuronal and glial cells with immunohistochemistry.

View Article and Find Full Text PDF

Schizophrenia is regarded as a neurodevelopmental disorder with its course progressing throughout life. However, the aetiology and development of schizophrenia are still under investigation. Several data suggest that the dysfunction of epigenetic mechanisms is known to be involved in the pathomechanism of this mental disorder.

View Article and Find Full Text PDF

Noradrenergic neurotransmission is a critical mediator of stress responses. In turn, exposure to stress induces noradrenergic system adaptations, some of which are implicated in the etiology of stress-related disorders. Adrenergic receptors (ARs) in the ventral tegmental area (VTA) have been demonstrated to regulate phasic dopamine (DA) release in the forebrain, necessary for behavioral responses to conditional cues.

View Article and Find Full Text PDF

Clinical studies provide evidence that ketamine and psilocybin could be used as fast-acting antidepressants, though their mechanisms and toxicity are still not fully understood. To address this issue, we have examined the effect of a single administration of ketamine and psilocybin on the extracellular levels of neurotransmitters in the rat frontal cortex and reticular nucleus of the thalamus using microdialysis. The genotoxic effect and density of glutamate receptor proteins was measured with comet assay and Western blot, respectively.

View Article and Find Full Text PDF

4-Iodo-2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (25I-NBOMe) is a new psychoactive substance with strong hallucinogenic properties. Our previous data reported increased release of dopamine, serotonin, and glutamate after acute injections and a tolerance development in the neurotransmitters release and rats' behavior after chronic treatment with 25I-NBOMe. The recreational use of 25I-NBOMe is associated with severe intoxication and deaths in humans.

View Article and Find Full Text PDF

Background: The present study investigated the role of proteins from the bromodomain and extra-terminal (BET) family in schizophrenia-like abnormalities in a neurodevelopmental model of schizophrenia induced by prenatal methylazoxymethanol (MAM) administration (MAM-E17).

Methods: An inhibitor of BET proteins, JQ1, was administered during adolescence on postnatal days (P) 23-P29, and behavioural responses (sensorimotor gating, recognition memory) and prefrontal cortical (mPFC) function (long-term potentiation (LTP), molecular and proteomic analyses) studies were performed in adult males and females.

Results: Deficits in sensorimotor gating and recognition memory were observed only in MAM-treated males.

View Article and Find Full Text PDF

Cannabinoid CB receptor (CB) agonists are potential analgesics void of psychotropic effects. Peripheral immune cells, neurons and glia express CB; however, the involvement of CB from these cells in neuropathic pain remains unresolved. We explored spontaneous neuropathic pain through on-demand self-administration of the selective CB agonist JWH133 in wild-type and knockout mice lacking CB in neurons, monocytes or constitutively.

View Article and Find Full Text PDF

Disturbances in the function of the mesostriatal dopamine system may contribute to the development and maintenance of chronic pain, including its sensory and emotional/cognitive aspects. In the present study, we assessed the influence of chronic constriction injury (CCI) of the sciatic nerve on the expression of genes coding for dopamine and opioid receptors as well as opioid propeptides in the mouse mesostriatal system, particularly in the nucleus accumbens. We demonstrated bilateral increases in mRNA levels of the dopamine D1 and D2 receptors (the latter accompanied by elevated protein level), opioid propeptides proenkephalin and prodynorphin, as well as delta and kappa (but not mu) opioid receptors in the nucleus accumbens at 7 to 14 days after CCI.

View Article and Find Full Text PDF

Background And Purpose: Mu and delta opioid receptors(MOP, DOP) contribution to the manifestations of pathological pain is not understood. We used genetic approaches to investigate the opioid mechanisms modulating neuropathic pain and its comorbid manifestations.

Experimental Approach: We generated conditional knockout mice with MOP or DOP deletion in sensoryNav1.

View Article and Find Full Text PDF

Neuropathic pain is a complex disorder associated with emotional and cognitive deficits that may impair nociceptive manifestations. There is high inter-individual variability in the manifestations of human neuropathic pain, which largely depends on personality traits. We aim to identify the influence of different behavioral traits in the inter-individual vulnerability to neuropathic pain manifestations using behavioral, electrophysiological and genetic approaches.

View Article and Find Full Text PDF

Stress elicits the release of glucocorticoids (GCs) that regulate energy metabolism and play a role in emotional memory. Astrocytes express glucocorticoid receptors (GR), but their contribution to cognitive effects of GC's action in the brain is unknown. To address this question, we studied how astrocyte-specific elimination of GR affects animal behavior known to be regulated by stress.

View Article and Find Full Text PDF
Article Synopsis
  • * In a study involving mice with chronic sciatic nerve injury, changes in pain-related behaviors and opioid receptor expressions were observed on different days post-injury, particularly peaking on day 14.
  • * Findings indicated decreased expression of certain opioid receptors in specific brain areas, along with altered mRNA levels, suggesting that opioids targeting the DOP receptor might be more effective in treating neuropathic pain.
View Article and Find Full Text PDF

MDMA (3,4-methylenedioxymethamphetamine) is a psychostimulant popular as a recreational drug because of its effect on mood and social interactions. MDMA acts at dopamine (DA) transporter (DAT) and serotonin (5-HT) transporter (SERT) and is known to induce damage of dopamine and serotonin neurons. MDMA is often ingested with caffeine.

View Article and Find Full Text PDF

Chronic exposure to opioids induces adaptations in brain function that lead to the formation of the behavioral and physiological symptoms of drug dependence and addiction. Animal models commonly used to test these symptoms typically last less than two weeks, which is presumably too short to observe the alterations in the brain that accompany drug addiction. Here, we analyzed the phenotypic and molecular effects of nearly lifelong morphine or saccharin intake in C57BL/6J mice.

View Article and Find Full Text PDF

The molecular mechanisms underlying the susceptibility or resilience to trauma-related disorders remain incompletely understood. Opioids modulate emotional learning, but the roles of specific receptors are unclear. Here, we aimed to analyze the contribution of the opioid system to fear responses in two inbred mouse strains exhibiting distinct behavioral phenotypes.

View Article and Find Full Text PDF

Chronic stress, the administration of glucocorticoids and the prolonged activation of glucocorticoid receptors (GRs) are reported to induce affective changes in humans and rodents that resemble a depressive state. However, data concerning the behavioral and molecular effects of the selective activation of specific GRs are limited, and the conclusions derived remain debatable. In this study, our goal was to investigate the behavioral and molecular changes following the prolonged activation of GRs in mice via exposure to the specific agonist dexamethasone (DEX).

View Article and Find Full Text PDF

The pharmacological attenuation of glial activation represents a novel approach for controlling neuropathic pain, but the role of microglial and astroglial cells is not well established. To better understand the potential role of two types of glial cells, microglia and astrocytes, in the pathogenesis of neuropathic pain, we examined markers associated with them by quantitative RT-PCR, western blot and immunohistochemical analyses in the dorsal horn of the lumbar spinal cord 7days after chronic constriction injury (CCI) to the sciatic nerve in mice. The mRNA and protein of microglial cells were labeled with C1q and OX42(CD11b/c), respectively.

View Article and Find Full Text PDF

Persistent changes that take place during the development of opioid addiction are thought to be due to reorganization of synaptic connections in relevant brain circuits. This neuronal plasticity requires trafficking of signaling molecules that are controlled by kinesins. In neurons, kinesin light chain 1 (KLC1) acts as the primary regulator of kinesin action.

View Article and Find Full Text PDF

We have previously demonstrated that glial inhibitors reduce the development of allodynia and hyperalgesia, potentiating the effect of a single morphine dose in a neuropathic pain model. This study explores the effects of two glial activation inhibitors, minocycline and pentoxifylline, on the development of tolerance to morphine in naive and chronic constriction injury (CCI)-exposed mice. Administration of morphine to naive (20 mg/kg; i.

View Article and Find Full Text PDF
Article Synopsis
  • ERKs are activated by opioids like morphine, playing a key role in addiction, with significant changes in their activity linked to opioid actions.
  • A 5-minute morphine treatment caused a rapid increase in ERK1/2 activity in cells with the mu-opioid receptor, while prolonged use led to a slight increase in activity, and withdrawal reduced ERK phosphorylation.
  • The study used RNA interference to silence transcription factors CREB and Elk-1, which revealed that these factors are important in regulating ERK activity during opioid treatment and withdrawal responses.
View Article and Find Full Text PDF

alpha-Synuclein is a presynaptic protein proposed to serve as a negative regulator of dopaminergic neurotransmission. Recent research has implicated alpha-synuclein in chronic neuroadaptations produced by psychostimulant and opiate use, as well as in genetically determined susceptibility to alcoholism in humans. The aim of our study was to characterize the changes in alpha-synuclein expression after short-term abstinence from chronic alcohol drinking in mice.

View Article and Find Full Text PDF

Nerve injury and the consequent release of interleukins (ILs) are processes implicated in pain transmission. To study the potential role of IL-1 in the pathogenesis of allodynia and hyperalgesia, IL-1alpha and comparative IL-1beta, IL-6, and IL-10 mRNA levels were quantified using competitive RT-PCR of the lumbar spinal cord and dorsal root ganglia (DRG; L5-L6) three and seven days after chronic constriction injury (CCI) in rats. Microglial and astroglial activation in the ipsilateral spinal cord and DRG were observed after injury.

View Article and Find Full Text PDF

Repeated administration of morphine is associated with the development of tolerance, yet the mechanism underlying this phenomenon is still poorly understood. Recent evidence implicating glycogen synthase kinase 3 (GSK3) in opioid receptor signaling pathways has prompted us to investigate its role in morphine tolerance. Administration of 10 mg/kg morphine i.

View Article and Find Full Text PDF