Mammalian receptor-mediated endocytosis (RME) often involves at least one of three isoforms of the large GTPase dynamin (Dyn). Dyn pinches-off vesicles at the plasma membrane and mediates uptake of many viruses, although some viruses directly penetrate the plasma membrane. RME is classically interrogated by genetic and pharmacological interference, but this has been hampered by undesired effects.
View Article and Find Full Text PDFIn 2022, a genotype IV (GIV) strain of Japanese encephalitis virus (JEV) caused an unprecedented and widespread outbreak of disease in pigs and humans in Australia. As no veterinary vaccines against JEV are approved in Australia and all current approved human and veterinary vaccines are derived from genotype (G) III JEV strains, we used the recently described insect-specific Binjari virus (BinJV) chimeric flavivirus vaccine technology to produce a JEV GIV vaccine candidate. Herein we describe the production of a chimeric virus displaying the structural prM and E proteins of a JEV GIV isolate obtained from a stillborn piglet (JEV) in the genomic backbone of BinJV (BinJ/JEVprME).
View Article and Find Full Text PDFSeveral technological approaches have been used to develop vaccines against COVID-19, including those based on inactivated viruses, viral vectors, and mRNA. This study aimed to monitor the maintenance of anti-SARS-CoV-2 antibodies in individuals from Brazil according to the primary vaccination regimen, as follows: BNT162b2 (group 1; 22) and ChAdOx1 (group 2; 18). Everyone received BNT162b2 in the first booster while in the second booster CoronaVac, Ad26.
View Article and Find Full Text PDFHerein, we report the synthesis and biological evaluation of a novel series of heparinoid amphiphiles as inhibitors of heparanase and SARS-CoV-2. By employing a tailor-made synthetic strategy, a library of highly sulfated homo-oligosaccharides bearing d-glucose or a C5-epimer (i.e.
View Article and Find Full Text PDFMosquito-borne viruses are a major worldwide health problem associated with high morbidity and mortality rates and significant impacts on national healthcare budgets. The development of antiviral drugs for both the treatment and prophylaxis of these diseases is thus of considerable importance. To address the need for therapeutics with antiviral activity, a library of heparan sulfate mimetic polymers was screened against dengue virus (DENV), Yellow fever virus (YFV), Zika virus (ZIKV), and Ross River virus (RRV).
View Article and Find Full Text PDFBackground: Background: Neurodegenerative diseases manifest behavioral dysfunction with disease progression. Intervention with neuropsychiatric drugs is part of most multi-drug treatment paradigms. However, only a fraction of patients responds to the treatments and those responding must deal with drug-drug interactions and tolerance issues generally attributed to off-target activities.
View Article and Find Full Text PDFThe COVID-19 pandemic has highlighted the need for vaccines capable of providing rapid and robust protection. One way to improve vaccine efficacy is delivery via microarray patches, such as the Vaxxas high-density microarray patch (HD-MAP). We have previously demonstrated that delivery of a SARS-CoV-2 protein vaccine candidate, HexaPro, via the HD-MAP induces potent humoral immune responses.
View Article and Find Full Text PDFThe emergence of SARS-CoV-2 variants alters the efficacy of existing immunity towards the viral spike protein, whether acquired from infection or vaccination. Mutations that impact N-glycosylation of spike may be particularly important in influencing antigenicity, but their consequences are difficult to predict. Here, we compare the glycosylation profiles and antigenicity of recombinant viral spike of ancestral Wu-1 and the Gamma strain, which has two additional N-glycosylation sites due to amino acid substitutions in the N-terminal domain (NTD).
View Article and Find Full Text PDFAging is a major risk factor for neurodegenerative diseases, and coronavirus disease 2019 (COVID-19) is linked to severe neurological manifestations. Senescent cells contribute to brain aging, but the impact of virus-induced senescence on neuropathologies is unknown. Here we show that senescent cells accumulate in aged human brain organoids and that senolytics reduce age-related inflammation and rejuvenate transcriptomic aging clocks.
View Article and Find Full Text PDFBackground: We previously demonstrated the safety and immunogenicity of an MF59-adjuvanted COVID-19 vaccine based on the SARS-CoV-2 spike glycoprotein stabilised in a pre-fusion conformation by a molecular clamp using HIV-1 glycoprotein 41 sequences. Here, we describe 12-month results in adults aged 18-55 years and ≥56 years.
Methods: Phase 1, double-blind, placebo-controlled trial conducted in Australia (July 2020-December 2021; ClinicalTrials.
Dengue virus, an arbovirus, causes an estimated 100 million symptomatic infections annually and is an increasing threat as the mosquito range expands with climate change. Dengue epidemics are a substantial strain on local economies and health infrastructure, and an understanding of what drives severe disease may enable treatments to help reduce hospitalizations. Factors exacerbating dengue disease are debated, but gut-related symptoms are much more frequent in severe than mild cases.
View Article and Find Full Text PDFThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) Omicron variant sub-lineages spread rapidly worldwide, mostly due to their immune-evasive properties. This has put a significant part of the population at risk for severe disease and underscores the need for effective anti-SARS-CoV-2 agents against emergent strains in vulnerable patients. Camelid nanobodies are attractive therapeutic candidates due to their high stability, ease of large-scale production, and potential for delivery via inhalation.
View Article and Find Full Text PDFIn August 2022, a novel henipavirus (HNV) named Langya virus (LayV) was isolated from patients with severe pneumonic disease in China. This virus is closely related to Mòjiāng virus (MojV), and both are divergent from the bat-borne HNV members, Nipah (NiV) and Hendra (HeV) viruses. The spillover of LayV is the first instance of a HNV zoonosis to humans outside of NiV and HeV, highlighting the continuing threat this genus poses to human health.
View Article and Find Full Text PDFThe global coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spawned an ongoing demand for new research reagents and interventions. Herein we describe a panel of monoclonal antibodies raised against SARS-CoV-2. One antibody showed excellent utility for immunohistochemistry, clearly staining infected cells in formalin-fixed and paraffin embedded lungs and brains of mice infected with the original and the omicron variants of SARS-CoV-2.
View Article and Find Full Text PDFBackground: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unlikely to be a major transfusion-transmitted pathogen; however, convalescent plasma is a treatment option used in some regions. The risk of transfusion-transmitted infections can be minimized by implementing Pathogen Inactivation (PI), such as THERAFLEX MB-plasma and THERAFLEX UV-Platelets systems. Here we examined the capability of these PI systems to inactivate SARS-CoV-2.
View Article and Find Full Text PDFUnlabelled: Around 25% of women undergoing Axillary Clearance (ANC) develop lymphedema (LE). Intervention with a compression garment is recommended to prevent LE but no randomised evidence exists to support this strategy.
Methods: A randomised trial tested standard management versus application of graduated compression garments (20-24 mmHg) to affected arm, for 1 year.
All flaviviruses, including Zika virus, produce noncoding subgenomic flaviviral RNA (sfRNA), which plays an important role in viral pathogenesis. However, the exact mechanism of how sfRNA enables viral evasion of antiviral response is not well defined. Here, we show that sfRNA is required for transplacental virus dissemination in pregnant mice and subsequent fetal brain infection.
View Article and Find Full Text PDFCOVID-19, caused by the SARS-CoV-2 virus, has become a global pandemic that is still present after more than two years. COVID-19 is mainly known as a respiratory disease that can cause long-term consequences referred to as long COVID. Molecular imaging of SARS-CoV-2 in COVID-19 patients would be a powerful tool for studying the pathological mechanisms and viral load in different organs, providing insights into the disease and the origin of long-term consequences and assessing the effectiveness of potential COVID-19 treatments.
View Article and Find Full Text PDFCoronavirus disease-2019 (COVID-19) is primarily a respiratory disease, however, an increasing number of reports indicate that SARS-CoV-2 infection can also cause severe neurological manifestations, including precipitating cases of probable Parkinson's disease. As microglial NLRP3 inflammasome activation is a major driver of neurodegeneration, here we interrogated whether SARS-CoV-2 can promote microglial NLRP3 inflammasome activation. Using SARS-CoV-2 infection of transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) as a COVID-19 pre-clinical model, we established the presence of virus in the brain together with microglial activation and NLRP3 inflammasome upregulation in comparison to uninfected mice.
View Article and Find Full Text PDFVarious chemical adjuvants are available to augment immune responses to non-replicative, subunit vaccines. Optimized adjuvant selection can ensure that vaccine-induced immune responses protect against the diversity of pathogen-associated infection routes, mechanisms of infectious spread, and pathways of immune evasion. In this study, we compare the immune response of mice to a subunit vaccine of Middle Eastern respiratory syndrome coronavirus (MERS-CoV) spike protein, stabilized in its prefusion conformation by a proprietary molecular clamp (MERS SClamp) alone or formulated with one of six adjuvants: either () aluminium hydroxide, () SWE, a squalene-in-water emulsion, () SQ, a squalene-in-water emulsion containing QS21 saponin, () SMQ, a squalene-in-water emulsion containing QS21 and a synthetic toll-like receptor 4 (TLR4) agonist 3D-6-acyl Phosphorylated HexaAcyl Disaccharide (3D6AP); () LQ, neutral liposomes containing cholesterol, 1.
View Article and Find Full Text PDFThe COVID-19 pandemic response has shown how vaccine platform technologies can be used to rapidly and effectively counteract a novel emerging infectious disease. The speed of development for mRNA and vector-based vaccines outpaced those of subunit vaccines, however, subunit vaccines can offer advantages in terms of safety and stability. Here we describe a subunit vaccine platform technology, the molecular clamp, in application to four viruses from divergent taxonomic families: Middle Eastern respiratory syndrome coronavirus (MERS-CoV), Ebola virus (EBOV), Lassa virus (LASV) and Nipah virus (NiV).
View Article and Find Full Text PDFClin Transl Immunology
August 2022
Objectives: To determine whether SARS-CoV-2 can trigger complement activation, the pathways that are involved and the functional significance of the resultant effect.
Methods: SARS-CoV-2 was inoculated into a human lepirudin-anticoagulated whole blood model, which contains a full repertoire of complement factors and leukocytes that express complement receptors. Complement activation was determined by measuring C5a production with an ELISA, and pretreatment with specific inhibitors was used to identify the pathways involved.
The ongoing SARS-CoV-2 pandemic continues to pose an enormous health challenge globally. The ongoing emergence of variants of concern has resulted in decreased vaccine efficacy necessitating booster immunizations. This was particularly highlighted by the recent emergence of the Omicron variant, which contains over 30 mutations in the spike protein and quickly became the dominant viral strain in global circulation.
View Article and Find Full Text PDFSince the start of the COVID-19 pandemic, multiple waves of SARS-CoV-2 variants have emerged. Of particular concern is the omicron variant, which harbors 28 mutations in the spike glycoprotein receptor binding and N-terminal domains relative to the ancestral strain. The high mutability of SARS-CoV-2 therefore poses significant hurdles for development of universal assays that rely on spike-specific immune detection.
View Article and Find Full Text PDF