Publications by authors named "Wataru Yashiro"

We report on recent developments that enable megahertz hard X-ray phase contrast imaging (MHz XPCI) experiments at the Single Particles, Clusters, and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument of the European XFEL facility (EuXFEL). We describe the technical implementation of the key components, including an MHz fast camera and a modular indirect X-ray microscope system based on fast scintillators coupled through a high-resolution optical microscope, which enable full-field X-ray microscopy with phase contrast of fast and irreversible phenomena. The image quality for MHz XPCI data showed significant improvement compared with a pilot demonstration of the technique using parallel beam illumination, which also allows access to up to 24 keV photon energies at the SPB/SFX instrument of the EuXFEL.

View Article and Find Full Text PDF

Purpose: The COVID-19 pandemic has affected lives and dental treatment. Aerosols and droplets generated during dental treatment present a risk of infection for dental care workers. However, detailed elucidation of the conditions under which those are generated has yet to be presented, and no clear countermeasures for protection have been established.

View Article and Find Full Text PDF
Article Synopsis
  • Hydrodynamic cavitation is a process that helps with things like cleaning water and making chemicals in special reactors.
  • In a specific tube called a Venturi tube, there are many fast-spinning bubbles called vortex cavitation that can glow in the dark, and how bright they are depends on how big and how many there are.
  • Researchers found out that these bubbles are actually shaped differently than what people thought; instead of being round, they're angulated, and they studied how fast the surface of these bubbles moves.
View Article and Find Full Text PDF

Notwithstanding the various uses of rubber, the fracture mechanism of filler-reinforced rubber remains unclear. This study used four-dimensional computed tomography (4D-CT) involving monochromatic synchrotron X-rays to examine the cavitation within silica-reinforced rubber quantitatively and systematically. The results suggested a threshold value of silica content for the cavitation morphology.

View Article and Find Full Text PDF

Purpose: The hazards of aerosols generated during dental treatments are poorly understood. This study aimed to establish visualization methods, discover conditions for droplets/aerosols generated in simulating dental treatments and identify the conditions for effective suction methods.

Methods: The spreading area was evaluated via image analysis of the droplets/aerosols generated by a dental air turbine on a mannequin using a light emitting diode (LED) light source and high-speed camera.

View Article and Find Full Text PDF

X-ray absorption of breast cancers and surrounding healthy tissue can be very similar, a situation that sometimes leads to missed cancers or false-positive diagnoses. To increase the accuracy of mammography and breast tomosynthesis, we describe dynamic X-ray elastography using a novel pulsed X-ray source. This new imaging modality provides both absorption and mechanical properties of the imaged material.

View Article and Find Full Text PDF

The temporal resolution of X-ray tomography, using a synchrotron radiation X-ray source, has been improved to millisecond order in recent years. However, the sample must be rotated at a speed of more than a few thousand revolutions per minute, which makes it difficult to control the environment around the sample. In this study, a high-speed rotation device has been developed, comprising two synchronized coaxial motors movable along the direction of the axis, which can stretch or compress the rotating sample.

View Article and Find Full Text PDF

X-ray reflectometry (XRR), a surface-sensitive technique widely used for characterizing surfaces, buried interfaces, thin films, and multilayers, enables determination of the electron density distribution perpendicular to a well-defined surface specularly reflecting X-rays. However, the electron density distribution parallel to the surface cannot be determined from an X-ray reflectivity curve. The electron density correlation in the lateral direction is usually probed by measuring the grazing-incidence small-angle X-ray scattering (GISAXS).

View Article and Find Full Text PDF

The self-imaging phenomenon referred to as the Talbot effect in the field of optics was discovered by H.F. Talbot in the 1830s, and is now widely used for imaging using not only visible light but also X-rays, electrons, neutrons, and matter waves.

View Article and Find Full Text PDF

X-ray grating interferometry, which has been spotlighted in the last decade as a multi-modal X-ray imaging technique, can provide three independent images, i.e., absorption, differential-phase, and visibility-contrast images.

View Article and Find Full Text PDF

Edge-illumination x-ray phase contrast imaging (EI XPCI) is a non-interferometric phase-sensitive method where two absorption masks are employed. These masks are fabricated through a photolithography process followed by electroplating which is challenging in terms of yield as well as time- and cost-effectiveness. We report on the first implementation of EI XPCI with Pt-based metallic glass masks fabricated by an imprinting method.

View Article and Find Full Text PDF

The mammalian skeleton stores calcium and phosphate ions in bone matrix. Osteocytes in osteocyte lacunae extend numerous dendrites into canaliculi less than a micron in diameter and which are distributed throughout bone matrix. Although osteoclasts are the primary bone-resorbing cells, osteocytes also reportedly dissolve hydroxyapatite at peri-lacunar bone matrix.

View Article and Find Full Text PDF

Endochondral ossification is a developmental process by which cartilage is replaced by bone. Terminally differentiated hypertrophic chondrocytes are calcified, vascularized, and removed by chondroclasts before bone matrix is laid down by osteoblasts. In mammals, the malleus is one of three auditory ossicles that transmit vibrations of the tympanic membrane to the inner ear.

View Article and Find Full Text PDF

X-ray grating interferometry has been highlighted in the last decade as a multi-modal X-ray phase-imaging technique for providing absorption, differential phase, and visibility-contrast images. It has been mainly reported that the visibility contrast in the visibility-contrast image originates from unresolvable random microstructures. In this paper, we show that the visibility contrast is even reduced by a uniform sample with flat surfaces due to the so-called "beam-hardening effect", which has to be taken into account when X-rays with a continuous spectrum is used.

View Article and Find Full Text PDF

We investigated effects of unresolvable sharp edges on images obtained in a grating-based X-ray differential phase imaging technique. Results of numerical calculations for monochromatic X-rays show that an unresolvable sharp edge generates not only differential-phase contrast but also visibility contrast. The latter shows that the visibility contrast has another major origin other than ultra-small-angle X-ray scattering (USAXS) from randomly distributed unresolvable microstructures, which has been considered the main origin for the contrast.

View Article and Find Full Text PDF

With the aim of clinical applications of X-ray phase imaging based on Talbot-Lau-type grating interferometry to joint diseases and breast cancer, machines employing a conventional X-ray generator have been developed and installed in hospitals. The machine operation especially for diagnosing rheumatoid arthritis is described, which relies on the fact that cartilage in finger joints can be depicted with a dose of several milligray. The palm of a volunteer observed with 19 s exposure (total scan time: 32 s) is reported with a depicted cartilage feature in joints.

View Article and Find Full Text PDF

The three-dimensional network of lacunae and canaliculi that regulates metabolism in bone contains osteocytes and their dendritic processes. We constructed a synchrotron radiation X-ray microscope for sequential tomography of mouse tibia first by using a Talbot interferometer to detect the degree of bone mineralization and then by using absorption contrast under a slightly defocused setting to enhance outline contrast thereby visualizing structures of the osteocyte lacuno-canalicular network. The resultant pair of tomograms was precisely aligned with each other, allowing evaluation of mineral density in the vicinity of each osteocyte lacuna and canaliculus over the entire thickness of the cortical bone.

View Article and Find Full Text PDF

Wavefront measurement for a hard-X-ray nanobeam using single-grating interferometry based on the Talbot effect and the Fourier transform method was demonstrated in the 1-km-long beamline of SPring-8. 10 keV X-rays were one-dimensionally focused down to 32 nm using a total-reflection elliptical mirror. An intentionally distorted wavefront was generated using a deformable mirror placed just upstream of the focusing mirror.

View Article and Find Full Text PDF

Phase-contrast X-ray computed laminography is demonstrated for the volume reconstruction of extended flat objects, not suitable to the usual tomographic scan. Using a Talbot interferometer, differential phase measurements are obtained and used to reconstruct the real part of the complex refractive index. The specific geometry of laminography leads to unsampled frequencies in a double cone in the reciprocal space, which degrades the spatial resolution in the direction normal to the object plane.

View Article and Find Full Text PDF

X-ray Talbot interferometry is attractive as a method for X-ray phase imaging and phase tomography for objects that weakly absorb X-rays. Because X-ray Talbot interferometry has the advantage that X-rays of a broad energy bandwidth can be used, high-speed X-ray phase imaging is possible with white synchrotron radiation. In this paper, we demonstrate time-resolved three-dimensional observation with X-ray Talbot interferometry (namely, four-dimensional X-ray phase tomography).

View Article and Find Full Text PDF

X-ray Talbot interferometry, which uses two transmission gratings, has the advantage that broad energy bandwidth x-rays can be used. We demonstrate the use of white synchrotron radiation for high-speed X-ray phase imaging and tomography in combination with an X-ray Talbot interferometer. The moiré fringe visibility over 20% was attained, enabling quantitative phase measurement.

View Article and Find Full Text PDF

We assesses the efficiency of x-ray Talbot interferometry (XTI), a technique based on the Talbot effect for measuring a wavefront gradient, in terms of how quickly it can capture a high-quality phase image with a large signal-to-noise ratio for a given incident photon number. Photon statistics cause errors in the phase of the moiré fringes and impose a detection limit on the wavefront gradient. The relation between the incident photon number and the detection limit is determined, and a figure of merit of XTI for a monochromatic cone beam is then defined.

View Article and Find Full Text PDF