Plants recognize molecules related to a variety of biotic stresses through pattern recognition receptors to activate plant immunity. In the interactions between plants and chewing herbivores, such as lepidopteran larvae, oral secretions (OS) are deposited on wounded sites, which results in the elicitation of plant immune responses. The widely conserved receptor-like kinase CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) has been broadly associated with the recognition of microbial components, such as fungal chitin, but its relevance to herbivory remained unclear.
View Article and Find Full Text PDFAn indole-3-acetic acid (IAA)-glucose hydrolase, THOUSAND-GRAIN WEIGHT 6 (TGW6), negatively regulates the grain weight in rice. TGW6 has been used as a target for breeding increased rice yield. Moreover, the activity of TGW6 has been thought to involve auxin homeostasis, yet the details of this putative TGW6 activity remain unclear.
View Article and Find Full Text PDFLactococcus lactis strains are used as starter cultures in the production of fermented dairy and vegetable foods, but the species also occurs in other niches such as plant material. Lactococcus lactis subsp. lactis G50 (G50) is a plant-derived strain and potential candidate probiotics.
View Article and Find Full Text PDFMotor imagery (MI) is a manifestation of mental movements, but it cannot be identified visually. Therefore, to a large extent, MI assessment has not yet been established. The present study aimed to investigate whether frontal oxy-Hb changes and cardiac autonomic nervous system activity during MI are associated with the psychometric scale assessment of MI and clarify the utility of each index in MI assessment.
View Article and Find Full Text PDFRice is the staple food for over half the world's population. Genes associated with rice yield include THOUSAND GRAIN WEIGHT 6 (TGW6), which negatively regulates the number of endosperm cells as well as grain weight. The 1-bp deletion allele of tgw6 cloned from the Indian landrace rice cultivar Kasalath, which has lost function, enhances both grain size and yield.
View Article and Find Full Text PDFYellow protein of the takeout family (YPT) and albino-related takeout protein (ALTO) are involved in body-color polyphenism in Schistocerca gregaria. YPT has been proposed to bind to β-carotene, whereas the physiological role of ALTO is unclear. Structurally, takeout proteins contain a long continuous tunnel to bind specific ligands.
View Article and Find Full Text PDFAbscisic acid (ABA) regulates abiotic stress and developmental responses including regulation of seed dormancy to prevent seeds from germinating under unfavorable environmental conditions. ABA HYPERSENSITIVE GERMINATION1 (AHG1) encoding a type 2C protein phosphatase (PP2C) is a central negative regulator of ABA response in germination; however, the molecular function and regulation of AHG1 remain elusive. Here we report that AHG1 interacts with DELAY OF GERMINATION1 (DOG1), which is a pivotal positive regulator in seed dormancy.
View Article and Find Full Text PDFBackground: Dihydroflavonol 4-reductase (DFR) is the key enzyme committed to anthocyanin and proanthocyanidin biosynthesis in the flavonoid biosynthetic pathway. DFR proteins can catalyse mainly the three substrates (dihydrokaempferol, dihydroquercetin, and dihydromyricetin), and show different substrate preferences. Although relationships between the substrate preference and amino acids in the region responsible for substrate specificity have been investigated in several plant species, the molecular basis of the substrate preference of DFR is not yet fully understood.
View Article and Find Full Text PDFTo improve the productivity of Paraphoma-like fungal strain B47-9 for biodegradable plastic (BP)-degrading enzyme (PCLE), the optimal concentration of emulsified poly(butylene succinate-co-adipate) (PBSA) in the medium was determined. Emulsified PBSA was consumed as a sole carbon source and an inducer of PCLE production by strain B47-9. Among the various concentrations of emulsified PBSA [0.
View Article and Find Full Text PDFCutinase-like esterase from the yeasts Pseudozyma antarctica (PaE) shows strong degradation activity in an agricultural biodegradable plastic (BP) model of mulch films composed of poly(butylene succinate-co-adipate) (PBSA). P. antarctica is known to abundantly produce a glycolipid biosurfactant, mannosylerythritol lipid (MEL).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2014
Ants are eusocial insects that are found in most regions of the world. Within its caste, worker ants are responsible for various tasks that are required for colony maintenance. In their chemical communication, α-helical carrier proteins, odorant-binding proteins, and chemosensory proteins, which accumulate in the sensillum lymph in the antennae, play essential roles in transferring hydrophobic semiochemicals to chemosensory receptors.
View Article and Find Full Text PDFIn Pseudomonas protegens CHA0 and other fluorescent pseudomonads, the Gac/Rsm signal transduction pathway controls secondary metabolism and suppression of fungal root pathogens via the expression of regulatory small RNAs (sRNAs). Because of its high cost, this pathway needs to be protected from overexpression and to be turned off in response to environmental stress such as the lack of nutrients. However, little is known about its underlying molecular mechanisms.
View Article and Find Full Text PDFLatex and other exudates in plants contain various proteins that are thought to play important defensive roles against herbivorous insects and pathogens. Herein, the defensive effects of phloem exudates against the Eri silkworm, Samia ricini (Saturniidae, Lepidoptera) in several cucurbitaceous plants were investigated. It was found that phloem exudates are responsible for the defensive activities of cucurbitaceous plants, such as the wax gourd Benincasa hispida and Cucumis melo, especially in B.
View Article and Find Full Text PDFJuvenile hormones (JHs) control a diversity of crucial life events in insects. In Lepidoptera which major agricultural pests belong to, JH signaling is critically controlled by a species-specific high-affinity, low molecular weight JH-binding protein (JHBP) in hemolymph, which transports JH from the site of its synthesis to target tissues. Hence, JHBP is expected to be an excellent target for the development of novel specific insect growth regulators (IGRs) and insecticides.
View Article and Find Full Text PDFWe determined the three-dimensional structure of the PHD finger of the rice Siz/PIAS-type SUMO ligase, OsSiz1, by NMR spectroscopy and investigated binding ability for a variety of methylated histone H3 tails, showing that OsSiz1-PHD primarily recognizes dimethylated Arg2 of the histone H3 and that methylations at Arg2 and Lys4 reveal synergy effect on binding to OsSiz1-PHD. The K4 cage of OsSiz1-PHD for trimethylated Lys4 of H3K4me3 was similar to that of the BPTF-PHD finger, while the R2 pocket for Arg2 was different. It is intriguing that the PHD module of Siz/PIAS plays an important role, with collaboration with the DNA binding domain SAP, in gene regulation through SUMOylation of a variety of effectors associated with the methylated arginine-riched chromatin domains.
View Article and Find Full Text PDFJuvenile hormone (JH) plays crucial roles in many aspects of the insect life. All the JH actions are initiated by transport of JH in the hemolymph as a complex with JH-binding protein (JHBP) to target tissues. Here, we report structural mechanism of JH delivery by JHBP based upon the crystal and solution structures of apo and JH-bound JHBP.
View Article and Find Full Text PDFThe small ubiquitin-related modifier (SUMO) is a ubiquitin-like post-translational modifier that alters the localization, activity, or stability of many proteins. In the sumoylation process, an activated SUMO is transferred from SUMO-activating enzyme E1 complex (SAE1/SAE2) to SUMO-conjugating enzyme E2 (Ubc9). Among the multiple domains in E1, a C-terminal ubiquitin fold domain (UFD) of SAE2 shows high affinity for Ubc9, implying that UFD will be functionally important.
View Article and Find Full Text PDFThe identity elements of transfer RNA are the molecular basis for recognition by each cognate aminoacyl-tRNA synthetase. In the archaea system, the tryptophan tRNA identity has not been determined in detail. To investigate the molecular recognition mechanism of tryptophan tRNA by tryptophanyl-tRNA synthetase (TrpRS) from the hyperthermophilic and aerobic archaeon, Aeropyrum pernix K1, various mutant transcripts of tryptophan tRNA prepared by an in vitro transcription system were examined by overexpression of A.
View Article and Find Full Text PDFPhenylalanine tRNA identity has been determined in the bacteria and the eukaryote system, but remains unknown for the archaea system. To investigate the molecular recognition mechanism of phenylalanine tRNA by phenylalanyl-tRNA synthetase from hyperthermophilic and aerobic archaeon, Aeropyrum pernix K1, various mutant transcripts of phenylalanine tRNA prepared by an in vitro transcription system were examined by overexpressed A. pernix phenylalanyl tRNA synthetase.
View Article and Find Full Text PDFTo investigate the recognition mechanism of tryptophan tRNA by tryptophanyl-tRNA synthetase from extreme hyperthermophilic and aerobic archaeon, Aeropyrum pernix K1, tryptophanylation activities were examined by using mutant tryptophan tRNA transcripts prepared by in vitro transcription system. Their transcripts were aminoacylated with tryptophan by overexpressed A. pernix tryptophanyl-tRNA synthetase.
View Article and Find Full Text PDF